Sunspot abundance linked to heavy rains in East Africa

August 05, 2007

WASHINGTON -- A new study reveals correlations between plentiful sunspots and periods of heavy rain in East Africa. Intense rainfall in the region often leads to flooding and disease outbreaks.

The analysis by a team of U.S. and British researchers shows that unusually heavy rainfalls in East Africa over the past century preceded peak sunspot activity by about one year. Because periods of peak sunspot activity, known as solar maxima, are predictable, so too are the associated heavy rains that precede them, the researchers propose.

"With the help of these findings, we can now say when especially rainy seasons are likely to occur, several years in advance," says paleoclimatologist and study leader Curt Stager of Paul Smith's College in Paul Smiths, New York. Forewarned by such predictions, public health officials could ramp up prevention measures against insect-borne diseases long before epidemics begin, he adds.

The sunspot-rainfall analysis is scheduled to appear on 7 August in the Journal of Geophysical Research - Atmospheres, a publication of the American Geophysical Union.

Increasing sunspot numbers indicate a rise in the sun's energy output. Sunspot abundance peaks on an 11-year cycle. The next peak is expected in 2011-2012. If the newfound pattern holds, rainfall would also peak the year before.

"We expect East Africa to experience a major intensification of rainy season precipitation, along with widespread Rift Valley Fever epidemics, a year or so before the solar maximum of 2011-2012," the team reports. Because mosquitoes and other disease-carrying insects thrive in wet conditions, heavy rains may herald outbreaks of diseases such as Rift Valley Fever.

The new analysis relies on rainfall data going back a century. The scientists also used historical records of water levels at lakes Victoria, Tanganyika, and Naivasha.

The work counters previous research that found no connection between sunspot cycles and rainfall in East Africa. Stager's team concludes that, although the link between sunspots and rainfall was weak between 1927 and 1968, the cyclic pattern held true throughout the 20th century. Previous statistical analysis discounted the link for a variety of reasons, including the influence of El Niño and other climatic disturbances not associated with sunspots.

Scientists have investigated apparent correlations between solar variability and Lake Victoria's water levels since the beginning of the last century, says co-author Alexander Ruzmaikin of NASA's Jet Propulsion Laboratory in Pasadena, California. The new research "shows that these correlations are, in fact, not accidental, effectively resolving a longstanding historical puzzle and improving our knowledge of how solar variability affects Africa's climate," he adds.

Stager, Ruzmaikin and their colleagues offer several reasons why sunspot peaks may affect rainfall. In a simple scenario, increased solar energy associated with sunspots heats both land and sea, forcing moist air to rise and triggering precipitation.

While sunspot peaks augur extraordinarily wet rainy seasons, heavy rains are possible at other times as well, Stager acknowledges. But, most of the rainiest times, he says, are consistently coupled with the predictable rhythms of sunspot peaks. And, to be forewarned is to be forearmed.

"The hope is that people on the ground will use this research to predict heavy rainfall events," Stager says. "Those events lead to erosion, flooding, and disease."
-end-
The National Science Foundation funded the study.

Title: "Sunspots, El Niño, and the levels of Lake Victoria, East Africa"

Authors: J. Curt Stager, Natural Sciences Division, Paul Smith's College, Paul Smiths, NY 12970, USA;

Alexander Ruzmaikin, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA;

Declan Conway, School of Development Studies, University of East Anglia, Norwich NR4 7TJ, UK;

Piet Verburg, Institute of Ecology, University of Georgia, Athens, GA 30602, USA;

Peter J. Mason, MWH UK Ltd, Terriers House, 201 Amersham Road, High Wycombe, Bucks HP13 5AJ, UK.

Citation: Stager, J. C., A. Ruzmaikin, D. Conway, P. Verburg, and P. J. Mason (2007), Sunspots, El Niño, and the levels of Lake Victoria, East Africa, J. Geophys. Res., 112, D15106, doi:10.1029/2006JD008362.

Contact information for authors:

Curt Stager, Professor of Natural Resources, office phone +1 (518) 327-6342, cstager@paulsmiths.edu

American Geophysical Union

Related Rainfall Articles from Brightsurf:

Study projects more rainfall in Florida during flooding season
A new study by researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science projects an increase in Florida's late summertime rainfall with rising Atlantic Ocean temperatures.

Importance of rainfall highlighted for tropical animals
Imagine a tropical forest, and you might conjure up tall trees hung with vines, brightly colored birds, howling monkeys, and ... rain.

New study could help better predict rainfall during El Niño
Researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science have uncovered a new connection between tropical weather events and US rainfall during El NiƱo years.

Mediterranean rainfall immediately affected by greenhouse gas changes
Mediterranean-type climates face immediate drops in rainfall when greenhouse gases rise, but this could be interrupted quickly if emissions are cut.

Future rainfall could far outweigh current climate predictions
Scientists from the University of Plymouth analysed rainfall records from the 1870s to the present day with their findings showing there could be large divergence in projected rainfall by the mid to late 21st century.

NASA estimates Imelda's extreme rainfall
NASA estimated extreme rainfall over eastern Texas from the remnants of Tropical Depression Imelda using a NASA satellite rainfall product that incorporates data from satellites and observations.

NASA estimates heavy rainfall in Hurricane Dorian
Hurricane Dorian is packing heavy rain as it moves toward the Bahamas as predicted by NOAA's NHC or National Hurricane Center.

NASA looks at Barry's rainfall rates
After Barry made landfall as a Category 1 hurricane, NASA's GPM core satellite analyzed the rate in which rain was falling throughout the storm.

NASA looks at Tropical Storm Barbara's heavy rainfall
Tropical Storm Barbara formed on Sunday, June 30 in the Eastern Pacific Ocean over 800 miles from the coast of western Mexico.

NASA looks at Tropical Storm Fani's rainfall rates
Tropical Storm Fani formed in the Northern Indian Ocean over the weekend of April 27 and 28, 2019.

Read More: Rainfall News and Rainfall Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.