Research reveals why some smokers become addicted with their first cigarette

August 05, 2008

New research from The University of Western Ontario reveals how the brain processes the 'rewarding' and addictive properties of nicotine, providing a better understanding of why some people seemingly become hooked with their first smoke. The research, led by Steven Laviolette of the Department of Anatomy and Cell Biology at the Schulich School of Medicine & Dentistry could lead to new therapies to prevent nicotine dependence and to treat nicotine withdrawal when smokers try to quit. The paper is published in the August 6th Journal of Neuroscience.

"Nicotine interacts with a variety of neurochemical pathways within the brain to produce its rewarding and addictive effects," explains Laviolette. "However, during the early phase of tobacco exposure, many individuals find nicotine highly unpleasant and aversive, whereas others may become rapidly dependent on nicotine and find it highly rewarding. We wanted to explore that difference."

The researchers found one brain pathway in particular uses the neurotransmitter 'dopamine' to transmit signals related to nicotine's rewarding properties. This pathway is called the 'mesolimbic' dopamine system and is involved in the addictive properties of many drugs of abuse, including cocaine, alcohol and nicotine.

"While much progress has been made in understanding how the brain processes the rewarding effects of nicotine after the dependence is established, very little is known about how the mesolimbic dopamine system may control the initial vulnerability to nicotine; that is, why do some individuals become quickly addicted to nicotine while others do not, and in some cases, even find nicotine to be highly aversive."

The scientists identified which specific dopamine receptor subtype controlled the brain's initial sensitivity to nicotine's rewarding and addictive properties and were able to manipulate these receptors to control whether the nicotine is processed as rewarding or aversive.

"Importantly, our findings may explain an individual's vulnerability to nicotine addiction, and may point to new pharmacological treatments for the prevention of it, and the treatment of nicotine withdrawal," says Laviolette. The research was funded by the Canadian Institutes of Health Research and the Canadian Psychiatric Research Foundation.
-end-


University of Western Ontario

Related Dopamine Articles from Brightsurf:

Dopamine surge reveals how even for mice, 'there's no place like home'
''There's no place like home,'' has its roots deep in the brain.

New dopamine sensors could help unlock the mysteries of brain chemistry
In 2018, Tian Lab at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor.

Highly sensitive dopamine detector uses 2D materials
A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Viewing dopamine receptors in their native habitat
A new study led by UT Southwestern researchers reveals the structure of the active form of one type of dopamine receptor, known as D2, embedded in a phospholipid membrane.

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.

Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.

Read More: Dopamine News and Dopamine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.