ONR scientist awarded for 'game-changing' research on wireless networks

August 05, 2015

ARLINGTON, Va.--When warfighters need to send covert messages over military wireless networks, they cloak the transmission signals in a haze of virtual "noise" or chatter. This method hides secret communications effectively, but also consumes immense bandwidth, limiting message size and speed.

However, thanks to the efforts of a computer scientist sponsored by the Office of Naval Research (ONR), military wireless networks could one day be larger, faster and accommodate more users.

For his work on network information theory--which seeks to determine how many users and devices a wireless network can support--Dr. Syed Jafar, a professor at the University of California, Irvine, recently won the 2015 Blavatnik National Award for Young Scientists.

"Dr. Jafar has conducted game-changing research in the study of wireless network capacity," said Program Officer Dr. Satanu Das, who works in ONR's C4ISR Department. "This has helped us explore new frontiers in bandwidth efficiency for military communication networks."

The Blavatnik awards are presented yearly by the New York Academy of Sciences, honor the nation's most exceptional scientists and engineers under 42 years of age, and provide a prize of $250,000 to each winner. Jafar was one of three winners chosen from among 300 candidates.

Jafar's award-winning research determines how much user capacity a wireless network (a series of signal transmitters and receivers) can hold. With the rapid growth of--and need for--civilian and military wireless networks, this knowledge quest has taken on unprecedented urgency.

Wireless networks have a limited, or fixed, amount of bandwidth and user capacity. When just a few people are online, signal strength is great, but when more users connect, the connection slows down.

"Take a network that can support 20 users, for example," said Jafar. "It's loud, chaotic and everyone is talking at once, creating interference that diminishes connection strength."

To remedy this, wireless providers usually divide available bandwidth into slices, like a cake. The more users, the smaller the bandwidth ration for each. The problem, said Jafar, is this method has never been proven to be the most effective or efficient.

Through his research, Jafar has found that--by changing the mathematical formulas and algorithms used to design wireless signals--it's possible to potentially filter out undesired signals at every network receiver, making other users' interference less intrusive while allowing each user to access half of the total bandwidth free from interference.

"This means that, in a network of 20 users, each person's available bandwidth can increase by a factor of 10," said Jafar. "In theory, everyone gets half the cake instead of one-twentieth. This principle can apply to networks of varying sizes."

Altering the signal design formulas also naturally jams undesired signals, guaranteeing communication security, since only desired signals are visible at each receiver.

Although Jafar points out his research is still theoretical and needs further testing, his work has influenced the overarching conversation about how people understand wireless networks and the best way to design them.

"This also could benefit the work ONR does, since the military is always seeking information advantage," said Jafar. "By increasing its wireless network capacity, the military can accommodate more users, send out stronger, more secure covert transmissions and more effectively jam incoming hostile signals."

Jafar's work aligns with several tenets of the Cooperative Strategy for 21st Century Seapower, a maritime strategy shared by the U.S. Navy, Marine Corps and Coast Guard. The strategy calls for increased focus on cyberspace operations, which includes defensive and offensive measures to protect networks and data.

Office of Naval Research

Related Wireless Networks Articles from Brightsurf:

5G wireless may lead to inaccurate weather forecasts
Upcoming 5G wireless networks that will provide faster cell phone service may lead to inaccurate weather forecasts, according to a Rutgers study on a controversial issue that has created anxiety among meteorologists.

Terahertz receiver for 6G wireless communications
Future wireless networks of the 6th generation (6G) will consist of a multitude of small radio cells that need to be connected by broadband communication links.

'Very low' risk of unknown health hazards from exposure to 5G wireless networks
Experts weigh in on recent online reports that warn of frightening health consequences from new fifth generation (5G) wireless networks.

NIST formula may help 5G wireless networks efficiently share communications frequencies
Researchers at the National Institute of Standards and Technology (NIST) have developed a mathematical formula that, computer simulations suggest, could help 5G and other wireless networks select and share communications frequencies about 5,000 times more efficiently than trial-and-error methods.

Novel communications architecture for future ultra-high speed wireless networks
SEARCHLIGHT project radically rethinks wireless architectures for highly scalable ultra-dense millimeter-wave networks.

Multi-hop communication: Frog choruses inspire wireless sensor networks
A team including researchers from Osaka University looked to nature for inspiration in designing more effective wireless sensor networks.

A new tool developed at the UPNA assesses how interference impacts on wireless networks
At the NUP/UPNA a telecommunications engineer has developed a methodology to assess the impact of interference on wireless communications and find out the best location for devices that communicate with each other wirelessly.

Novel transmitter protects wireless devices from hackers
MIT researchers have developed a novel transmitter that frequency hops each individual 1 or 0 bit of a data packet, every microsecond, which is fast enough to thwart even the quickest hackers.

New algorithm keeps data fresh in wireless networks
Algorithm provides networks with the most current information available while avoiding data congestion.

Want to make your factory wireless? NIST can guide you!
Knowing that it will take reliable wireless communications to make the smart factory of the not-so-distant future a reality, the National Institute of Standards and Technology (NIST) has published the first-ever set of science-based guidelines to help users select the best wireless system for any specific industrial environment, custom-design the setup to make it work, successfully deploy it, and then ensure that the network performs as needed.

Read More: Wireless Networks News and Wireless Networks Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.