Cyanobacteria can manufacture biocatalysts for the industry

August 05, 2015

Using photosynthetically active microorganisms, researchers at the Ruhr-Universität Bochum (RUB) have succeeded in manufacturing several biocatalysts suitable for industrial application: a crucial step towards sustainable chemical processes, according to Dr Marc Nowaczyk from the Chair for Plant Biochemistry and Jun.-Prof Dr Robert Kourist, Junior Research Group Microbial Biochemistry.

Sustainable manufacture of enzymes for the industry

Seeing as our planet's fossil resources are limited, researchers are looking for new methods for the production of certain substances, which are not dependent on mineral oil. Photoautotrophic organisms, which gain their energy from light, could be a key to success. The preparation of enzymes allows industrial applications as detergents and for the manufacture of food The only source materials that organisms such as cyanobacteria require for enzyme synthesis are light, water, nutrient salts and CO2. Complex carbon sources such as sugar are not needed, making the approach a sustainable and renewable alternative to the use of agricultural products for cultivation. The researchers from RUB are attempting to develop such "green cell factories".

Feasibility study successful: cyanobacteria compatible with enzyme production

Using cyanobacteria, the researchers from Bochum manufactured enzymes which, in turn, can be used for producing valuable pharmaceutical substances. For this purpose, they planted genes for enzyme synthesis into the microorganisms. "A particularly important observation was that cell components of cyanobacteria do not interfere with the catalytic activity," Robert Kourist sums up the results of the study. "Using photosynthesis for the production of industrial enzymes from carbon dioxide and water is a novel and environmentally friendly approach."

Process generates pure products

Many catalytic processes result in not only the desired product, but also in a number of by-products, which have to be painstakingly filtered out. Chemical reactions often generate two substances whose chemical structures behave like image and mirror image, so called enantiomers. Using the cyanobacterial, the Bochum researchers have succeeded in generating primarily one structure - an important requirement for pharmaceutical application. They published the results in the journal "Microbial Cell Factories".

Technology requires higher productivity

However, a wide future application of the "green cell factory" concept requires an improved efficiency. To this end, faster-growing cyanobacteria are required that do not need costly freshwater for growth. "Several cyanobacterial strains have an outstanding potential for this purpose," says Marc Nowaczyk. The team from Bochum is already looking for ways to optimise the "cell factories"; more specifically: the researchers are striving to improve photosynthetic electron transport.
-end-
Bibliographic record

M. Bartsch, S.K. Gassmeyer, K. Köninger, K. Igarashi, P. Liauw, N. Dyczmons-Nowaczyk, K. Miyamoto, M.M. Nowaczyk, R. Kourist (2015): Photosynthetic production of enantioselective biocatalysts, Microbial Cell Factories, DOI: 10.1186/s12934-015-0233-5

Further information

Jun.-Prof Dr Robert Kourist, Junior Research Group Microbial Biotechnology, Faculty of Biology and Biotechnology at the Ruhr-Universität Bochum, 44780 Bochum, Germany, phone: +49/234/32-25029, email: Robert.Kourist@rub.de

Dr Marc Nowaczyk, Chair for Plant Biochemistry, Faculty of Biology and Biotechnology at the Ruhr-Universität Bochum, 44780 Bochum, Germany, phone: +49/234/32-23657, email: marc.m.nowaczyk@rub.de

Ruhr-University Bochum

Related Microorganisms Articles from Brightsurf:

A more resistant material against microorganisms is created to restore cultural heritage
The study was performed by a research team at the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba and Seville's Institute of Natural Resources and Agrobiology of the Spanish National Research Council

NYUAD study finds gene targets to combat microorganisms binding to underwater surfaces
A group of synthetic biologists at NYU Abu Dhabi (NYUAD) have identified new genetic targets that could lead to safe, biologically-based approaches to combat marine biofouling - the process of sea-based microorganisms, plants, or algae binding to underwater surfaces.

Less flocking behavior among microorganisms reduces the risk of being eaten
When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators.

Are vultures spreaders of microbes that put human health at risk?
A new analysis published in IBIS examines whether bacteria, viruses, and other microorganisms that are present in wild vultures cause disease in the birds, and whether vultures play a role in spreading or preventing infectious diseases to humans and other animal species.

Timing key in understanding plant microbiomes
Oregon State University researchers have made a key advance in understanding how timing impacts the way microorganisms colonize plants, a step that could provide farmers an important tool to boost agricultural production.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.

Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with

New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.

Read More: Microorganisms News and Microorganisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.