Nav: Home

Syracuse University physicists awarded NSF grant to study cancer-cell behavior

August 05, 2016

Three physicists in the College of Arts and Sciences are using a major grant to study the dynamics and interactions of cancer cells.

M. Lisa Manning, associate professor of physics; M. Cristina Marchetti, the William R. Kenan Jr. Distinguished Professor of Physics; and Jennifer Schwarz, associate professor of physics, have been awarded a three-year, $686,000 grant from the National Science Foundation to apply principles of soft-matter physics to cancer therapy.

The trio, whose research focuses on theoretical soft condensed matter and biological physics, will investigate new collective mechanisms that establish and maintain tumor boundaries in breast and cervix carcinomas.

Carcinoma is a type of cancer that usually begins in the tissue of the skin or in the lining of certain internal organs and then develops out of control.

"Understanding the mechanisms that confine carcinoma cells to a primary tumor or conversely facilitate their escape is of key importance in cancer therapy," Manning says. "In this framework, a confined tumor, in which cells retain the same neighbors, is solid-like. In contrast, malignant invasion, facilitated by cell rearrangement and escape from the primary tumor, can be modeled as a transition to a fluid-like state."

She continues: "Our goal is to provide quantitative support for these ideas, to shed light on tissue behavior, cell segregation and cell escape. Ultimately, we want to develop a better method for identifying tumor boundaries and predicting when a cancer becomes invasive."

Underpinning the project is what Manning labels a "paradigm-shifting conjecture"--that the transition from noninvasive to invasive tumors is governed by an unjamming, or solid-to-liquid, process. She and her colleagues plan to test their theory with new, active versions of a well-studied vertex model for confluent tissues and with fiber models for the extra-cellular matrix (ECM) surrounding the tumor.

"We will use our model to predict laws that govern cell motion in tissues," says Marchetti, adding that techniques and ideas from soft matter and statistical mechanics can be used to describe such biological systems.

Adds Schwarz: "We know the mechanical properties of a tumor depend on single-cell parameters, such as cell shape, cell stiffness and active forces generated by cell crawling. The behavior of a tumor is also influenced by the surrounding environment, including the ECM, which is a network of biopolymers."

She, Marchetti and Manning are collaborating with Professor Josef Kaes, a soft-matter physicist at the University of Leipzig (Germany), to develop methods for extracting important model parameters from experimental data from cancer cell lines and primary tumor samples.

In addition to developing tools to observe these processes more closely, the team will investigate how a cancer tumor regulates tissue stiffness and fluidity, and how cells escaping from a primary tumor boundary interact with the surrounding ECM.

"Although there is a physical barrier [called the basement membrane] that encloses most primary tumors, the boundaries are often maintained after the cells break through the barrier," says Manning, who recently returned from France, where she received the Young Scientist Award from the Commission on Statistical Physics of the International Union of Pure and Applied Physics. "We think fluid-solid transitions may be the key to understanding what holds such tumors together, and we've developed a theoretical framework that, for the first time, explains fluid-to-solid transitions in such tissues."

Cancer occurs when a normal cell mutates, or changes, but is unable to repair itself. The damaged cell keeps multiplying, and creates an abnormal growth of tissue called a tumor. Some tumors are cancerous; others are not.

"In a clinical setting, it's important to identify not only tumor boundaries to guide surgical resection, but also mechanical biomarkers for cancer aggressiveness," Marchetti says. "We will address these issues with ideas that are different from, and complementary to, ones being explored by traditional cancer biologists."

Designed to foster participation in the burgeoning field of biophysics, the project will involve graduate students, undergraduates and postdocs, and will provide professional development opportunities for young scientists.

Manning, Marchetti and Schwarz are members of the Syracuse Soft Matter Program, housed in A&S' Department of Physics. They also are active proponents of women in the STEM fields, as evidenced by a national conference they co-organized at Syracuse in January for undergraduate women in physics.
-end-


Syracuse University

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab