Nav: Home

Wistar scientists identify marker for myeloid-derived suppressor cells

August 05, 2016

PHILADELPHIA--(Aug. 5, 2016)--Myeloid-derived suppressor cells (MDSCs) are a population of immune cells that have been implicated in tumor resistance to various types of cancer treatment, including targeted therapies, chemotherapy and immunotherapy. Polymorphonuclear (PMN) cells represent the largest population of MDSCs. However, fully understanding the biology and clinical importance of these cells has been hampered by a lack of markers that set them apart from normal neutrophils.

Now, scientists at The Wistar Institute have identified a marker that distinguishes PMN-MDSCs from neutrophils in the blood of patients with a variety of cancers. Study results published in the journal Science Immunology also showed that higher numbers of cells positive for the marker were associated with larger tumor size.

"Before we started this work, the only way to isolate PMN-MDSCs was by density centrifugation of blood because they could not be properly identified in tumor tissue," said Dmitry I. Gabrilovich, M.D., Ph.D., Christopher M. Davis Professor and professor and program leader of the Translational Tumor Immunology program at Wistar, and senior author of the study. "Identifying a marker for PMN-MDSCs will allow us to study these cells in much more depth. In addition, if our clinical results are verified in larger studies, the marker could also be used to help physicians and patients make informed treatment decisions and, ultimately, it could be exploited to target PMN-MDSCs for therapeutic benefit."

MDSCs are potent suppressors of immune responses. They naturally regulate immune responses in healthy individuals, but the population rapidly expands in patients with cancer, and the presence of these cells has been associated with poor patient outcomes. One of the few ways to know for sure that cells are MDSCs is by showing that they suppress immune responses in vitro.

Gabrilovich and colleagues used whole-genome analysis to compare the genes expressed by PMN-MDSCs and neutrophils from the blood of patients with non-small cell lung cancer and head and neck cancer. The researchers focused on the genes expressed at higher levels in PMN-MDSCs compared with neutrophils, in particular those genes that encoded proteins detectable on the surface of cells. This led them to the protein LOX-1, which was almost undetectable on the surface of neutrophils but detectable on the surface of about one-third of PMN-MDSCs.

When they tested the ability of LOX-1-positive and LOX-1-negative cells to suppress immune responses in vitro only the LOX-1-positive cells had this function. The results showed that LOX-1 was a marker of PMN-MDSCs.

Gabrilovich and colleagues speculated that the number of LOX-1-positive PMN-MDSCs in blood and tumor samples from patients with cancer might help predict disease severity and outcome. They had samples from only a few patients with non-small cell lung cancer to study, but found that patients with larger tumors had higher numbers of these cells in both blood and tumor samples.

"Now that we have a specific marker for MDSCs, we can begin to ask new questions about the biology of these cells and their clinical significance," added Gabrilovich.
-end-
This work was supported by National Institutes of Health grants CA084488 and CA100062, National Cancer Institute grant P01 CA 098101, American Cancer Society grant RP-10-033-01-CCE, and Janssen Pharmaceutical. Co-authors of this study from The Wistar Institute include: Thomas Condamine, George A. Dominguez, Je-In Youn, Andrew V. Kossenkov, Sridevi Mony Kevin Alicea-Torres, Evgenii Tcyganov, Ayumi Hashimoto, Yulia Nefedova, Cindy Lin, and Simona Partlova. Other co-authors include: Alfred Garfall, Dan T. Vogl, Xiaowei Xu, Evgeniy Eruslanov, Steven M. Albelda, Meenakshi Bewtra, and Anil Rustgi from the University of Pennsylvania; Stella C. Knight, George Malietzis, and Gui Han Lee from Imperial College London; Xianwei Wang and Jawahar L. Mehta from the University of Arkansas for Medical Sciences; Neil Hockstein, Robert Witt, Gregory Masters, and Brian Nam from the Christiana Care Health System; and Denis Smirnov and Manuel A. Sepulveda from Janssen Research and Development, LLC.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

The Wistar Institute

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...