Nav: Home

UTA leads project to develop new device to deliver photo-induced cancer therapy

August 05, 2016

Physicists from The University of Texas at Arlington are leading a multidisciplinary project with The University of Texas Southwestern Medical Center in Dallas and The University of Texas MD Anderson Cancer Center in Houston to develop a new multifunctional platform that can integrate imaging and photo-induced cancer therapy in a single, portable device.

The process of destroying cancer cells by utilizing chemicals or heat generated by nanoparticles induced by near-infrared light - through processes including photodynamic therapy and photothermal therapy - has shown great promise as a treatment option, along with surgery, radiation therapy and chemotherapy. Photo-induced therapies are minimally invasive and cell destruction occurs only locally at tumor sites.

Scientists believe that a real-time, tumor-guided therapy device, which can perform imaging and therapy simultaneously, will further improve the outcome of photo-induced therapies for patients. Recent studies have shown that it is possible to incorporate some imaging reporters to the nanoparticles used in photo-induced therapies.

"Presently, the simultaneous cancer imaging and treatment of these nanoparticles is not possible due to the lack of a multifunctional device," said Mingwu Jin, UTA assistant professor of physics. "Our idea is to take an image of the tumor and then use that image to guide the physician where to focus the laser to deliver the therapy, while minimizing the damage to surrounding tissue."

The National Institutes of Health awarded a $415,336 grant to Jin for a three-year project titled "Boosting photo-induced cancer therapies through real-time image guidance." Jin is joined by UTA physics professors Jaehoon Yu and Wei Chen, and Liping Tang, professor of bioengineering.

Li Liu, assistant professor, Xiankai Sun, associate professor, both in radiology at UT Southwestern, and Chun Li, professor of diagnostic radiology at MD Anderson Cancer Center, are also collaborating on the project to provide expertise on cancer cell biology, preclinical nuclear imaging, and radio-chemistry.

Previously, portable imaging probes utilizing gamma rays and beta particles have been used, but each of these comes with technical hurdles, which have not allowed for the integration of simultaneous imaging and therapy in a single, portable device.

Jin and his colleagues plan to use the position-sensitive gas electron multiplier detector available in UTA's high energy physics lab and advanced spatiotemporal image processing to enable real-time image guided photo-induced therapies. The end goal is to develop a multifunctional device which they call Beta Image Guided Light-Induced Therapeutic dEvice or BIGLITE.

"Gas electron multiplier or GEM-based devices have many advantages," Jin said. "In additional to its excellent detection performance, the flexibility of GEM can be used for a miniature device with the easy integration of an near infrared fiber for therapeutic purposes. Although GEM technology is rapidly evolved and widely used in high energy physics experiments, to directly detect beta particles in a miniature setup requires significant research and innovative designs which will be carried out as part of our project."

Jin added that the team will apply spatiotemporal processing strategy for BIGLITE with the aid of optical imaging of visible light. A miniature digital camera will be integrated and synchronized with beta imaging to track the position and motion of BIGLITE related to the area of interest. The beta image frames can be enhanced through motion-compensated spatiotemporal processing to achieve a high frame rate to enable the real-time image guided near-infrared light delivery.

The researchers believe that their proposed BIGLITE device can significantly improve the efficacy and safety of photo-induced therapies and shorten treatment time for patients in a number of ways.

"First, image-guided near-infrared laser delivery can precisely kill cancer cells while sparing healthy ones," Jin said. "Second, due to this precise laser delivery, the laser power can be significantly increased so that more photon energy can be converted to chemical or thermal energy in a unit time for a faster tumor destruction. Third, this increased laser power can be utilized to lower the nanoparticle treatment dose for less toxicity."

Given that tumors are increasingly being detected at an earlier stage and the proportion of elderly patients is increasing, BIGLITE's ability to enable the "seek and treat" strategy will become increasingly important for photo-induced therapies as a minimally invasive and effective treatment option for a broad spectrum of cancers, Jin said.

Morteza Khaledi, dean of the College of Science, said that the project is a prime example of the important collaborative research being done at UTA and reflects the University's emphasis on health and the human condition, one of the four main pillars of UTA's Strategic Plan 2020: Bold Solutions | Global Impact.

"This project has tremendous potential to introduce a safer, faster, more efficient method of providing treatment for cancer patients," Khaledi said. "The research being done by Dr. Jin and his colleagues demonstrates again that we are committed to finding solutions to pressing medical issues which affect the health of so many people."

Chen's role in the project is to provide copper sulfide nanoparticles to use in testing with the BIGLITE device. In 2010, Chen led a team which first developed copper sulfide nanoparticles for use in photothermal therapy to remove cancer cells. Due to their unique optical properties, small size, low cost of production and low toxicity to cells, Chen and his colleagues found the copper sulfide nanoparticles to be promising nanomaterials for use in photothermal therapy.

Yu will provide the assistance on hardware development using GEM and Tang will help design studies to test the efficacy of the BIGLITE therapy.
About The University of Texas at Arlington

The University of Texas at Arlington is a Carnegie Research-1 "highest research activity" institution of about 55,000 students in campus-based and online degree programs and is the second-largest institution in The University of Texas System. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2016 Best for Vets list. Visit to learn more, and find UTA rankings and recognition at To learn more about UTA's Strategic Plan, see Strategic Plan 2020: Bold Solutions | Global Impact.

University of Texas at Arlington

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at