A novel robotic jellyfish able to perform 3D jet propulsion and maneuvers

August 05, 2019

As a source of inspiration, aquatic creatures such as fish, cetaceans, and jellyfish could inspire innovative designs to improve the ways that manmade systems operate in and interact with aquatic environments. Jellyfishes in nature propel themselves through their surroundings by radially expanding and contracting their bell-shaped bodies to push water behind them, which is called jet propulsion.

Contrary to prevailing view that jellyfishes are described as inefficient swimmers, jellyfishes have been proven to be one of the most energetically efficient swimmers. That is, it indicates that jellyfish-like swimming will have a remarkable propulsive advantage if low-energy propulsion is demanded. Therefore, the movements of jellyfish have attracted significant interest over the past decade in the context of bioinspired underwater vehicle.

Recently, researchers from Institute of Automation, Chinese Academy of Sciences in Beijing, China successfully developed a novel robotic jellyfish able to perform three-dimensional jellyfish-like propulsion and maneuvers based on a reinforcement learning-based method.

Combining the latest advancements in mechatronic design, materials, electronics, and control methods, researchers are making an integrated effort to develop smart actuators to fabricate various robotic jellyfishes. In generally, such robotic jellyfishes are often tethered and much slower in speed in comparison with the kind actuated by conventional electric motors. Most of existing robotic jellyfishes cannot freely adjust their three-axis attitude, which has an adverse effect on free-swimming propulsion and plausible applications.

To solve this problem, the research group led by Prof. Junzhi Yu from Institute of Automation, Chinese Academy of Sciences has investigated how a bioinspired motor-driven jellyfish-like robotic system capable of 3D motion is designed and controlled.

The designed robotic jellyfish models after Aurelia aurita (commonly termed moon jellyfish), which has a relatively large displacement and is especially suited for use with large load capacity. It is about 138 mm height and weights about 8.2 kg. As illustrated in Figure 1, the robotic jellyfish is hemispherical in shape and consists of a bell-shaped rigid head, a cylindroid main cavity, four separate six-bar linkage mechanisms, and a soft rubber skin. To enhance the maneuverability of the robotic jellyfish, a barycenter adjustment mechanism assembled inside the cavity is introduced. Through adjusting two clump weights in vertical or horizontal direction or in a combination of the two, the attitude regulation is achieved.

"It is very hard to establish a precise dynamic model for jellyfish-like swimming, since it is a highly nonlinear, strong coupling, and time-varying system." said by Prof. Junzhi Yu. "Parametric uncertainties and external disturbances in dynamic aquatic environments, at the same time, cause difficulty in deriving control laws by solving the inverse kinematics problem." Therefore, a reinforcement learning based closed-loop attitude control method is proposed for the robotic jellyfish, which can solve optimal decision control problem through direct interaction with the environment, particularly without the need for dynamic modeling.

Finally, the proposal of the reinforcement learning based attitude control method makes autonomous attitude regulation possible. "In comparison with most of the other robotic jellyfish, the built robot displays a high order of structure flexibility and yaw maneuverability." Pointed out by Prof. Junzhi Yu. He also stressed that this self-propelled robotic jellyfish with 3D motion has great implications for bioinspired design of jet propulsion system with great agility.
This work is supported by National Natural Science Foundation of China (Grant Nos. 61725305, 61633020, 61633017, 61573226) and Key Project of Frontier Science Research of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC004).

For more details, please refer to the upcoming paper "Design and attitude control of a novel robotic jellyfish capable of 3D motion", to be published in SCIENCE CHINA Information Sciences, 2019, Vol.62, No.9, 194202



VIDEO: https://v.qq.com/x/page/k09076yo4h3.html

Science China Press

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.