Molecular forces: The surprising stretching behavior of DNA

August 05, 2020

When large forces, for example in bridge construction, act on a heavy beam, the beam will be slightly deformed. Calculating the relationship between forces, internal stresses and deformations is one of the standard tasks in civil engineering. But what happens when you apply these considerations to tiny objects - for example, to a single DNA double helix?

Experiments with DNA molecules show that their mechanical properties are completely different from what those of macroscopic objects - and this has important consequences for biology and medicine. Scientists at TU Wien (Vienna) has now succeeded in explaining these properties in detail by combining ideas from civil engineering and physics.

Unexpected behaviour at the molecular level

At first glance, you might think of the DNA double helix as a tiny little spring that you can simply stretch and compress just like you would an ordinary spring. But it is not quite that simple: "If you stretch a piece of DNA, you would actually expect the number of turns to decrease. But in certain cases the opposite is true: "When the helix gets longer, it sometimes twists even more," says civil engineer Johannes Kalliauer from the Institute of Mechanics of Materials and Structures at TU Wien. "Apart from that, DNA molecules are much more ductile than the materials we usually deal with in civil engineering: They can become 70% longer under tensile stress."

These strange mechanical properties of DNA are of great importance for biology and medicine: "When the genetic information is read from the DNA molecule in a living cell, the details of the geometry can determine whether a reading error occurs, which in the worst case can even cause cancer," says Johannes Kalliauer. "Until now, molecular biology has had to be satisfied with empirical methods to explain the relationship between forces and the geometry of DNA."

In his dissertation, Johannes Kalliauer got to the bottom of this issue - and he did so in the form of a rather unusual combination of subjects: His work was supervised on the one hand by the civil engineer Prof. Christian Hellmich, and on the other hand by Prof. Gerhard Kahl from the Institute of Theoretical Physics.

"We used molecular dynamics methods to reproduce the DNA molecule on an atomic scale on the computer," explains Kalliauer. "You determine how the DNA helices are compressed, stretched or twisted - and then you calculate the forces that occur and the final position of the atoms." Such calculations are very complex and only possible with the help of large supercomputers - Johannes Kalliauer used the Vienna Scientific Cluster (VSC) for this purpose.

That way, the strange experimental findings could be explaned - such as the counterintuitive result that in certain cases the DNA twists even more when stretched. "It's hard to imagine on a large scale, but at the atomic level it all makes sense," says Johannes Kalliauer.

Strange intermediate world

Within the atomic models of theoretical physics, interatomic forces and distances can be determined. Using certain rules developed by the team based on principles from civil engineering, the relevant force quantities required to describe the DNA strand as a whole can then be determined - similar to the way the statics of a beam in civil engineering can be described using some important cross-sectional properties.

"We are working in an interesting intermediate world here, between the microscopic and the macroscopic," says Johannes Kalliauer. "The special thing about this research project is that you really need both perspectives and you have to combine them."

This combination of significantly different size scales plays a central role at the Institute for Mechanics of Materials and Structures time and again. After all, the material properties that we feel every day on a large scale are always determined by behaviour at the micro level. The current work, which has now been published in the "Journal of the Mechanics and Physics of Solids", is intended to show on the one hand how to combine the large and the small in a scientifically exact way, and on the other hand to help to better understand the behaviour of DNA - right down to the explanation of hereditary diseases.

Dr. Johannes Kalliauer
Institute of Mechanics of Materials and Structures
TU Wien
T +43-1-58801-20251

Vienna University of Technology

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to