Incorporating solar harvesting into the side of buildings could enhance energy sustainability

August 05, 2020

TROY, N.Y. -- If builders could incorporate solar harvesting into the siding of a building, the amount of energy from the grid that a structure would need may significantly decrease.

In research published recently in Renewable Energy, a team of researchers from Rensselaer Polytechnic Institute, led by Diana-Andra Borca-Tasciuc, a professor of mechanical, aerospace, and nuclear engineering, demonstrated the potential of wedge-shaped luminescent solar concentrators (LSCs). These efficient modular solar units could easily be hung on the side of a building.

The LSCs considered in this study are made of transparent plastic with a film of photoluminescent particles on the back, similar to those used in LEDS. Solar cells mounted on the larger edge of the LSC convert energy captured from the sun into electric power. The way these devices capture and concentrate sunlight enhances the power that is produced by each unit of surface area within a solar cell.

Before now, this unique shape and construction had only shown promise in theory. In this research, the team took that a step further and tested how these LSCs could function within the lab. The researchers also used light data from the field to help predict annual energy production if the LSCs were to be hung on walls. Based on data from Albany, New York, and Phoenix, Arizona, the annual energy production predicted for these devices was up to 40% more than the annual energy produced by solar panels, when both are installed vertically.

"While this technology is not meant to replace solar panels, it expands our capacity to efficiently harvest solar energy in the built environment," Borca-Tasciuc said. "It works well for vertical wall applications where a solar panel does not perform as well."

"As the world transitions toward carbon neutrality, using vertical surfaces effectively for solar power harvesting will be a necessity for the solar industry," said Duncan Smith, a doctoral student in mechanical engineering at Rensselaer. "Particularly in urban settings, the roof area of taller buildings is usually dedicated to HVAC equipment and cannot be used for solar panel installations. In these same buildings, however, there is extra room on the walls."

The team is now looking to optimize the shape of the LSC and is exploring ways it could engineer surface properties to more efficiently capture and retain the light entering the device.

Borca-Tasciuc and Smith were joined in this research by Michael Hughes, the director of Faculty Development for the Education for Working Professionals Program at Rensselaer. The research team also worked with undergraduate students who were completing a capstone project through the Multidisciplinary Research Laboratory at Rensselaer, a space that provides real-world experiences for students in preparation for their future careers.
-end-
About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America's first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Rensselaer Polytechnic Institute

Related Renewable Energy Articles from Brightsurf:

Creating higher energy density lithium-ion batteries for renewable energy applications
Lithium-ion batteries that function as high-performance power sources for renewable applications, such as electric vehicles and consumer electronics, require electrodes that deliver high energy density without compromising cell lifetimes.

Renewable energy targets can undermine sustainable intentions
Renewable energy targets (RETs) may be too blunt a tool for ensuring a sustainable future, according to University of Queensland-led research.

Intelligent software for district renewable energy management
CSEM has developed Maestro, an intelligent software application that can manage and schedule the production and use of renewable energies for an entire neighborhood.

Renewable energy transition makes dollars and sense
New UNSW research has disproved the claim that the transition to renewable electricity systems will harm the global economy.

Renewable energy advance
In order to identify materials that can improve storage technologies for fuel cells and batteries, you need to be able to visualize the actual three-dimensional structure of a particular material up close and in context.

Illuminating the future of renewable energy
A new chemical compound created by researchers at West Virginia University is lighting the way for renewable energy.

Using fiber optics to advance safe and renewable energy
Fiber optic cables, it turns out, can be incredibly useful scientific sensors.

Renewable energy developments threaten biodiverse areas
More than 2000 renewable energy facilities are built in areas of environmental significance and threaten the natural habitats of plant and animal species across the globe.

Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.

Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.

Read More: Renewable Energy News and Renewable Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.