Sustainable chemistry at the quantum level

August 05, 2020

PITTSBURGH (August 5, 2020) ... Developing catalysts for sustainable fuel and chemical production requires a kind of Goldilocks Effect - some catalysts are too ineffective while others are too uneconomical. Catalyst testing also takes a lot of time and resources. New breakthroughs in computational quantum chemistry, however, hold promise for discovering catalysts that are "just right" and thousands of times faster than standard approaches.

University of Pittsburgh Associate Professor John A. Keith and his lab group at the Swanson School of Engineering are using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are "too slow" or "too expensive", far more thoroughly and quickly than was considered possible a few years ago. Keith is also the Richard King Mellon Faculty Fellow in Energy in the Swanson School's Department of Chemical and Petroleum Engineering.

The Keith Group's research compilation, "Computational Quantum Chemical Explorations of Chemical/Material Space for Efficient Electrocatalysts (DOI: 10.1149.2/2.F09202IF)," was featured this month in Interface, a quarterly magazine of The Electrochemical Society.

"For decades, catalyst development was the result of trial and error - years-long development and testing in the lab, giving us a basic understanding of how catalytic processes work. Today, computational modeling provides us with new insight into these reactions at the molecular level," Keith explained. "Most exciting however is computational quantum chemistry, which can simulate the structures and dynamics of many atoms at a time. Coupled with the growing field of machine learning, we can more quickly and precisely predict and simulate catalytic models."

In the article, Keith explained a three-pronged approach for predicting novel electrocatalysts: 1) analyzing hypothetical reaction paths; 2) predicting ideal electrochemical environments; and 3) high-throughput screening powered by alchemical perturbation density functional theory and machine learning. The article explains how these approaches can transform how engineers and scientists develop electrocatalysts needed for society.

"These emerging computational methods can allow researchers to be more than a thousand times as effective at discovering new systems compared to standard protocols," Keith said. "For centuries chemistry and materials science relied on traditional Edisonian models of laboratory exploration, which bring far more failures than successes and thus a lot of wasted time and resources. Traditional computational quantum chemistry has accelerated these efforts, but the newest methods supercharge them. This helps researchers better pinpoint the undiscovered catalysts society desperately needs for a sustainable future."
-end-
About John Keith

Dr. Keith is an associate professor and R. K. Mellon Faculty Fellow in Energy in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh. He obtained a BA degree from Wesleyan University (2001) and a PhD from Caltech (2007). He was an Alexander von Humboldt postdoctoral fellow at the University of Ulm (2007-2010) and later an associate research scholar at Princeton University (2010-2013). Keith is an expert in applying a wide range of computational quantum chemistry methods to understand molecular scale phenomena across broad areas of science and engineering. He has more than 65 research publications and was the recipient of a U.S. National Science Foundation CAREER award. From 2019-2020, he was funded by the U.S. and Luxembourg science foundations as a visiting researcher at the University of Luxembourg, where he studied state of the art chemical physics and atomistic machine learning methods.

University of Pittsburgh

Related Catalysts Articles from Brightsurf:

Ultrafast laser experiments pave way to better industrial catalysts
Arizona State University's Scott Sayres and his team have recently published an ultrafast laser study on uncharged iron oxide clusters, which could ultimately lead to the development of new and less-expensive industrial catalysts.

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Palladium catalysts can do it
Palladium catalysts help synthesize key chemicals for many industries. However, direct reaction of two basic reagents, aryl halides and alkyllithium compounds, remains a challenge.

Cyanobacteria as "green" catalysts in biotechnology
Researchers from TU Graz and Ruhr University Bochum show in the journal ACS Catalysis how the catalytic activity of cyanobacteria, also known as blue-green algae, can be significantly increased.

Better catalysts for a sustainable bioeconomy
Researchers at the Paul Scherrer Institute PSI and from ETH Zurich want to make so-called zeolites more efficient.

Sandwich catalysts offer higher activity and durability
POSTECH professor In Su Lee's team develops a double-layered nanoporous platinum catalyst that activates hydrogen generation.

Bespoke catalysts for power-to-X
Suitable catalysts are of great importance for efficient power-to-X applications -- but the molecular processes occurring during their use have not yet been fully understood.

Efficient indium oxide catalysts designed for CO2 hydrogenation to methanol
A team jointly led by Profs.SUN Yuhan, GAO Peng, and LI Shenggang at the Shanghai Advanced Research Institute (SARI) of the Chinese Academy of Sciences reported a successful case of theory-guided rational design of indium oxide (In2O3) catalysts for CO2 hydrogenation to methanol with high activity and selectivity.

Elucidation of nanostructures in practical heterogeneous catalysts
The nanostructure of the heterogeneous Ziegler-Natta catalyst was clarified on the basis of cutting-edge analytical techniques.

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

Read More: Catalysts News and Catalysts Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.