Drivers respond to pre-crash warnings with levels of attentive 'gaze'

August 05, 2020

A collision avoidance system, or pre-crash alert generated by a vehicle, can often be found as an optional safety feature in today's vehicles to help reduce possible accidents and save lives. However, these systems are not always tested in a real-world environment prior to the vehicle being owned and operated.

A team of engineers at the University of Missouri conducted open road testing of three collision avoidance systems and demonstrated that a drivers' visual behavior in response to an alert generated from a collision avoidance system can be divided into one of four different behavioral categories: active gaze, self-conscious gaze, attentive gaze and ignored gaze. Jung Hyup Kim, an assistant professor in the College of Engineering and the study's author, said similar studies used driving simulators and closed-course tracks for testing, but this is one of the first studies to use open road, or real world, conditions. The study tracked a group of college-age male drivers as they tested each system on 9.3 miles of open roads that reflect the typical driving experience for their age group -- streets near the Mizzou campus, other surrounding city streets and highways.

"If you truly want to evaluate the effectiveness of this technology, you also have to understand how drivers will respond to alerts, because every auto company develops their own guidelines for generating an alert," said Kim, whose appointment is in the Industrial and Manufacturing Systems Engineering Department. "Therefore, by better understanding a driver's visual behavior in response to an alert, this information could help auto companies develop more user-friendly systems and lead to less of a chance that a driver ignores or turns off a collision avoidance system."

Each participant was filmed responding to alerts by the collision avoidance system while driving. A combination of cameras was used -- a pair of specialized eye glasses worn by the driver to capture eye movement, a 360-degree camera mounted on the vehicle's roof and a camera pointed at the driver from the passenger side door to capture arm and leg movements. A GPS camera mounted on the windshield also logged the vehicle's speed and location.

Kim analyzed each video seven seconds before and after an alert occurred. He said a limitation of the study was the age group and demographics of the drivers, and future plans include incorporating more drivers of different ages and demographics.

"As time goes by, drivers get older, and their response times are likely to be slower and more delayed," Kim said. "Therefore, if we can collect data from maybe a thousand drivers and use a range of different ages and demographics, then that information might be beneficial for auto companies."

The conference paper, "The effects of collision avoidance warning systems on driver's visual behaviors," was presented at the 2020 International Conference on Human-Computer Interaction, held virtually this year due to the COVID-19 pandemic. Funding was provided by Missouri Employers Mutual. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

University of Missouri-Columbia

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to