Increased productivity, not less energy use, results from more efficient lighting

August 06, 2012

ALBUQUERQUE, N.M. -- Two researchers have reprised in the journal Energy Policy their groundbreaking finding that improvements in lighting -- from candles to gas lamps to electric bulbs -- historically have led to increased light consumption rather than lower overall energy use by society.

In an article in the journal Energy Policy, Sandia researcher Jeff Tsao and Harry Saunders of The Breakthrough Institute in Oakland, Calif., predicted in 2010 that the same phenomenon might apply to light-emitting diodes (LEDs), poised to take over from the Edison light bulb as the next, more efficient light source of choice.

But their main point, as three centuries have shown, was that increased light availability leads to increased productivity. Workers are no longer forced to stop shortly after nightfall, as they had in primitive, candle-illuminated huts, but instead could continue producing through the night in homes, offices, factories, and even at outdoor locations not serviced by power lines.

The original paper, titled "Solid-state lighting: an energy-economics perspective," drew attention to the increased productivity made possible by better lighting, rather than societal energy-savings mistakenly cited as a feature of improved lighting technologies.

Misinterpretations of the original paper by two widely read international media outlets led to the confusion that Tsao and his co-authors had shown that lighting efficiency improvements were no improvements at all. This is because reductions in neither overall energy usage nor overall lighting costs would occur.

The researchers, in the upcoming article, titled "Rebound effects for lighting," said the 2010 article generated both interest and confusion in the popular press and in the blogosphere. "This communication seeks to clarify some of this confusion for the particular benefit of energy economists and energy policy specialists," they wrote.

The new article appears under "Articles in Press" on the Energy Policy website.

"We were motivated to publish something, even if short, in Energy Policy, because that journal serves a community very different from that served by the Journal of Physics, where our original article was published," Tsao says. "We thought that many in the energy economics community were still unaware of the work, and of the benefit -- even when there is no direct energy-use savings -- of energy efficiency and other welfare-enhancing technologies."
-end-
Other authors of the 2010 article included Sandia researchers Mike Coltrin, Jerry Simmons and Randy Creighton (retired). Harry Saunders is also associated with Decision Processes Inc. in Danville, Calif.

The work was supported by Sandia's Solid-State Lighting Science Energy Frontier Research Center, which is funded by DOE's Office of Basic Energy Sciences.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness

DOE/Sandia National Laboratories

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.