Empa X-ray expert 'decodes' diesel soot

August 06, 2012

Soot particles are dangerous - there is nothing new in this knowledge. But what is it that makes fine particulates dangerous? Is it only diesel soot from vehicle engines? Does the danger also come from wood-burning stoves in holiday chalets? Or even from grease-laden fryer fumes from the restaurant around the corner? For a long time, these questions have been a hard nut for science to crack. Indeed, fine soot particles were collected in filters and their chemical components were analysed. Yet the question remained: what precisely is the source of the danger? Is it the soot particles themselves that make people ill? Or is it toxic chemicals the soot carries with it - like a wet sponge?

Not all smoke is created equal

The Norwegian Institute of Public Health wanted to investigate this matter and asked Empa scientist Artur Braun for support. Before joining Empa, Braun had worked at the University of Kentucky and there, in 2002, he analyzed soot particles for the first time on a synchrotron using soft X-rays. Result: diesel particles that have been "born" in the engine under high pressure and immense heat have a graphite structure - this is clearly visible under X-ray light. In the case of soot particles from wood fires, which have been generated under mild atmospheric conditions, this graphite structure is absent. The functional groups are also different: diesel soot was found to contain carboxyl groups such as those occurring in formic and acetic acid molecules; in the wood smoke, Braun found hydroxyl groups as in ethanol and methanol. There is thus a fine difference between smoke and smoke.

Analyse separately, fight together

The Norwegian toxicologists then went a step further and asked Braun's colleagues at the University of North Dakota to isolate the soot particles from the adherent chemical toxic substances using solvents. Braun then analysed the components individually under X-ray light: first the "bare" soot particles, then the solution with the suspected carcinogenic chemicals previously bound to the soot. Braun again found various functional groups on the carbon structure and was able to compare them with the findings of his earlier work.

At the same time, the toxicologists tested the effect of the two soot fractions on human lung cells in culture. For the first time separate investigations had been carried out to establish what is so dangerous in soot. The study, which recently appeared in the journal "Toxicology Letters", is, in Braun's opinion, the first to combine the methods of X-ray absorption spectroscopy (NEXAFS) with toxicological methods.

The WHO response

The results of the study were quite unambiguous: The "bare" soot particles triggered a genetic detoxification mechanism in the cell cultures. The cells had therefore been under "toxic attack". However, the washed out substances previously adhering to the soot also exhibited an effect: they caused inflammatory reactions in the cells and also acted as a cellular toxin. The World Health Organization (WHO) responded simultaneously. A number of new studies - including those by Braun and his colleagues from Norway and the USA - had indicated the carcinogenic effect of soot and sufficiently explained the underlying mechanisms.

It was now no longer possible to speak, as had been the case since 1988, of a probable risk of cancer ("probably carcinogenic to humans"). Reclassification followed on 12 June 2012. Diesel soot is now considered a cause of lung cancer "based on sufficient evidence"; what's more, there is a certain probability that diesel soot also increases the risk of bladder cancer.

X-ray research at Empa - measurements in Berkeley and Stanford

Physicist Artur Braun - after his " assistance" in the field of health research - is resuming his duties as group leader in Empa's High Performance Ceramics Laboratory, a position in which he also continues to work on synchrotrons in the USA and in Europe. He is regularly at the ALS radiation source in Berkeley (California) and at the Stanford synchrotron (SSRL) for measurements. For Empa, the expert uses synchrotron radiation methods for materials research into energy storage devices and converters.

Currently, there is another publication in preparation on the subject of fine particulates from wood combustion, to which Braun has also made crucial contributions. The cooperation between the disciplines will not end there. According to Braun, "The medical scientific potential of synchrotron methods for analyzing the biological interaction of cells with pathogenic substances is still far from being exhausted".
-end-


Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.