Curiosity ready to rove Mars

August 06, 2012

Almost nine months after it was launched, Curiosity, NASA's latest rover, landed safely in the Gale Crater of Mars in the wee hours of August 6 CDT. The last seven minutes were particularly dramatic as the mission executed several complicated maneuvers to deliver the car-sized rover through the thin Martian atmosphere and gently place it in a very specific location.

"Although it was nerve-wracking, everyone was confident, and Curiosity landed with amazing precision, right on time!" said Dr. Don Hassler, a Southwest Research Institute scientist and principal investigator of one of the rover's instruments.

The Mars Science Laboratory uses 10 instrument-based science investigations, including SwRI's Radiation Assessment Detector, to search for evidence of elements needed to support life - namely, water and carbon-based materials - and to characterize life-limiting factors, such as the planet's radiation environment.

SwRI's RAD is the only MSL science instrument that was put to work during the journey to Mars, measuring the radiation environment inside the spacecraft.

"We have seven-plus months of cruise observations and the data are looking great," said Hassler, science program directors at SwRI's Planetary Science Directorate in Boulder, Colo.

"As the Sun's activity increased, RAD observed several large X-class and M-class solar flares. We are comparing RAD data from inside MSL with data from other satellites to better understand and predict the dose rate that future astronauts will experience on future manned missions to Mars and elsewhere."

Now RAD's primary mission begins: Assessing the radiation environment on the surface of the planet. Mars has an extremely thin atmosphere - about one percent of Earth's - and lacks a global magnetic field, allowing more radiation to reach its surface and pose a hazard to life.

Radiation levels probably make the surface of modern Mars inhospitable for microbial life and would contribute to the breakdown of any near-surface organic compounds. RAD's measurements will help determine the depth a possible future robot on a life-detection mission might need to dig or drill to reach a microbial safe zone. Researchers will combine RAD's measurements with estimates of how the activity of the Sun and the atmosphere of Mars have changed in the past several billion years to provide insight into whether the surface may have been habitable in the past.

"The RAD website ( will eventually show our near-real-time observations of the radiation environment on the surface of Mars, sort of a daily 'Space Weather at Mars' update," said Hassler.

SwRI led the development of RAD, which will measure, for the first time, the radiation environment on the surface of Mars, measuring all the relevant energetic particle species originating from galactic cosmic rays, the Sun and other sources. Positioned in the left front corner of the rover, RAD is about the size of a coffee can and weighs about three pounds, but has capabilities of an Earth-bound instrument nearly 10 times its size. Its wide-angle telescope detects charged particles arriving from space, and the instrument also measures neutrons and gamma rays coming from Mars' atmosphere above, or the surface material below, the rover.
SwRI, together with Christian Albrechts University in Kiel, Germany, built RAD with funding from the NASA Human Exploration and Operations Mission Directorate and Germany's national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, Calif., manages the Mars Science Laboratory Project.

The NASA Science Mission Directorate, at NASA Headquarters in Washington, manages the Mars Exploration Program.

Southwest Research Institute

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to