Quantum physics: New insights into the remote control of quantum systems

August 06, 2012

A fundamental characteristic of quantum physics is the fact that two or more particles can exhibit correlations stronger than classically allowed. This unique characteristic applies particularly to quantum entanglement: as soon as the quantum state of a particle is measured the state of its entangled partner changes accordingly, regardless of how far apart the two entangled particles might be. This feature allows for the remote quantum state preparation, which is an essential ingredient for applications in quantum communication, quantum cryptography, and quantum computation.

The degree of entanglement is often used as a figure of merit for determining its usefulness for quantum technologies. Strongly entangled systems, however, are very sensitive to extrinsic influence and difficult to prepare and to control. A team of researchers headed by the physicists Caslav Brukner (theory) and Philip Walther (experiment) at the University of Vienna have been able to show that in order to achieve successful remote state preparation entanglement is not the only way forward. Under certain circumstances, non-entangled states can outperform their entangled counterparts for such tasks - as long as they have a significant amount of so-called "quantum discord". This novel and not yet fully understood measure of quantum correlations quantifies the disturbance of correlated particles when being measured.

In their experiments, the researchers used a variety of two-photon states with different polarization correlations. "By measuring the polarization state of a certain photon we prepare the state of the respective partner photon remotely", explains Philip Walther. "In the experiment we observe how the quality of our remotely prepared quantum state is affected by changes in the quantum discord." This work provides an important and significant step towards future quantum information processing schemes that would rely on less demanding resources.
The research was undertaken as a collaboration between the Faculty of Physics at the University of Vienna and the Vienna Center for Quantum Science and Technology (VCQ), the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences, the Centre for Quantum Technologies at the National University of Singapore and the University of Oxford.


"Quantum discord as resource for remote state preparation": Borivoje Dakic, Yannick-Ole Lipp, Xiaosong Ma, Martin Ringbauer, Sebastian Kropatschek, Stefanie Barz, Tomasz Paterek, Vlatko Vedral, Anton Zeilinger, Caslav Brukner, Philip Walther (Nature Physics 2012) DOI: 10.1038/NPHYS2377

Scientific Contact:

Philip Walther
Quantum Optics, Quantum Nanophysics, Quantum Information
Faculty of Physics
University of Vienna
Boltzmanngasse 5, 1090 Wien, Austria
T +43-664-602 77-725 60

University of Vienna

Related Quantum Physics Articles from Brightsurf:

Know when to unfold 'em: Applying particle physics methods to quantum computing
Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

Quantum physics: Physicists successfully carry out controlled transport of stored light
A team of physicists at Mainz University has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters.

New system detects faint communications signals using the principles of quantum physics
Researchers at the National Institute of Standards and Technology (NIST) have devised and demonstrated a system that could dramatically increase the performance of communications networks while enabling record-low error rates in detecting even the faintest of signals.

Quirky response to magnetism presents quantum physics mystery
In a new study just published and highlighted as an Editor's Suggestion in Physical Review Letters, scientists describe the quirky behavior of one such magnetic topological insulator.

Evidence of power: Phasing quantum annealers into experiments from nonequilibrium physics
Scientists at Tokyo Institute of Technology (Tokyo Tech) use commercially available quantum annealers, a type of quantum computer, to experimentally probe the validity of an important mechanism from nonequilibrium physics in open quantum systems.

Adapting ideas from quantum physics to calculate alternative interventions for infection and cancer
Published in Nature Physics, findings from a new study co-led by Cleveland Clinic and Case Western Reserve University teams show for the first time how ideas from quantum physics can help develop novel drug interventions for bacterial infections and cancer.

Quantum physics: Realization of an anomalous Floquet topological system
An international team led by physicists from the Ludwig-Maximilians Universitaet (LMU) in Munich realized a novel genuine time-dependent topological system with ultracold atoms in periodically-driven optical honeycomb lattices.

Quantum physics provides a way to hide ignorance
Students can hide their ignorance and answer questions correctly in an exam without their lack of knowledge being detected by teachers -- but only in the quantum world.

Quantum physics: Physicists develop a new theory for Bose-Einstein condensates
Bose-Einstein condensates are often described as the fifth state of matter: At extremely low temperatures, gas atoms behave like a single particle.

Attosecond physics: Quantum brakes in molecules
Physicists have measured the flight times of electrons emitted from a specific atom in a molecule upon excitation with laser light.

Read More: Quantum Physics News and Quantum Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.