Switching between habitual and goal-directed actions -- a '2 in 1' system in our brain

August 06, 2013

"Pressing the button of the lift at your work place, or apartment building is an automatic action - a habit. You don't even really look at the different buttons; your hand is almost reaching out and pressing on its own. But what happens when you use the lift in a new place? In this case, your hand doesn't know the way, you have to locate the buttons, find the right one, and only then your hand can press a button. Here, pushing the button is a goal-directed action." It is with this example that Rui Costa, principal investigator at the Champalimaud Neuroscience Programme (CNP), explains how critical it is to be able to shift between habits and goal-direct actions, in a fast and accurate way, in everyday life.

To unravel the circuit that underlies this capacity, the capacity to "break habits", was the goal of this study, carried out by Christina Gremel and Rui Costa, at NIAAA, National Institutes of Health, USA and the Champalimaud Foundation, in Portugal, that is published today (Date) in Nature Communications.

"We developed a task where mice would shift between making the same action in a goal-directed or habitual manner. We could then, for the first time, directly examine brain areas controlling the capacity to break habits," explains the study's lead author Christina Gremel from NIAAA. Evidence from previous studies has shown that two neighbouring regions of the brain are necessary for these different functions - the dorsal medial striatum is necessary for goal-directed actions and the dorsal lateral striatum is necessary for habitual actions. What was not known, and this new study reveals, is that a third region, the orbital frontal cortex (OFC), is critical for shifting between these two types of actions. As explained by Rui Costa, "when neurons in the OFC were inhibited, the generation of goal-directed actions was disrupted, while activation of these neurons, by means of a technique called optogenetics, selectively increased goal-directed actions."

For Costa, the results of this study suggest "something quite extraordinary - the same neural circuits function in a dynamic way, enabling the learning of automatic and goal-directed actions in parallel."

These results have important implications for understanding neuropsychiatric disorders where the balance between habits and goal-directed actions is disrupted, such as obsessive-compulsive disorder.

The neural bases of behaviour, and their connection to neuropsychiatric disorders, are at the core of ongoing work by neuroscientists and clinicians at the Champalimaud Foundation.
-end-
Media

Maria João Soares
mjsoares@jlma.pt

JLM&A, SA

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.