Emotional behavior of adults could be triggered in the womb

August 06, 2013

Adults could be at greater risk of becoming anxious and vulnerable to poor mental health if they were deprived of certain hormones while developing in the womb according to new research by scientists at Cardiff and Cambridge universities.

New research in mice has revealed the role of the placenta in long-term programming of emotional behaviour and the first time scientists have linked changes in adult behaviour to alterations in placental function.

Insulin-like growth factor-2 has been shown to play a major role in foetal and placental development in mammals, and changes in expression of this hormone in the placenta and foetus are implicated in growth restriction in the womb.

"The growth of a baby is a very complex process and there are lots of control mechanisms which make sure that the nutrients required by the baby to grow can be supplied by the mother," according to Professor Lawrence Wilkinson, a behavioural neuroscientist from Cardiff University's School of Psychology who led the research.

"We were interested in how disrupting this balance could influence emotional behaviours a long time after being born, as an adult," he added.

In order to explore how a mismatch between supply and demand of certain nutrients might affect humans, Professor Wilkinson and his colleagues Dr Trevor Humby, Mikael Mikaelsson - both also from Cardiff University - and Dr Miguel Constancia of Cambridge University, examined the behaviour of adult mice with a malfunctioned supply of a vital hormone.

Dr Humby added: "We achieved this by damaging a hormone called Insulin-like growth factor-2, important for controlling growth in the womb. What we found when we did this was an imbalance in the supply of nutrients controlled by the placenta, and that this imbalance had major effects on how subjects were during adulthood - namely, that subject became more anxious later in life.

"These symptoms were accompanied by specific changes in brain gene expression related to this type of behaviour. This is the first example of what we have termed 'placental-programming' of adult behaviour. We do not know exactly how these very early life events can cause long-range effects on our emotional predispositions, but we suspect that our research findings may indicate that the seeds of our behaviour, and possibly vulnerability to brain and mental health disorders, are sown much earlier than previously thought."

Although these studies were carried out in mice, the findings may have wider implications for human development. Further studies are planned to investigate the brain mechanisms linking early life events, placental dysfunction and the emotional state of adults.
-end-
'Placental programming of anxiety in adulthood revealed by Igf2-null models' is published today (16:00 (GMT) Tuesday 6th August 2013) in Nature Communications.

Research was funded by Cardiff University LINK funding.

For further information or to arrange an interview, please contact:


Dr Trevor Humby
Tel: 029 208 76758
Mobile: 07722 142457
E-mail: humbyt@cardiff.ac.uk

Cardiff University

Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, University Chancellor Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences, along with a longstanding commitment to lifelong learning. Cardiff's three flagship Research Institutes are offering radical new approaches to neurosciences and mental health, cancer stem cells and sustainable places.

Cardiff University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.