Older adults have morning brains!

August 06, 2014

Toronto, Canada - Older adults who are tested at their optimal time of day (the morning), not only perform better on demanding cognitive tasks but also activate the same brain networks responsible for paying attention and suppressing distraction as younger adults, according to Canadian researchers.

The study, published online July 7th in the journal Psychology and Aging (ahead of print publication), has yielded some of the strongest evidence yet that there are noticeable differences in brain function across the day for older adults.

"Time of day really does matter when testing older adults. This age group is more focused and better able to ignore distraction in the morning than in the afternoon," said lead author John Anderson, a PhD candidate with the Rotman Research Institute at Baycrest Health Sciences and University of Toronto, Department of Psychology.

"Their improved cognitive performance in the morning correlated with greater activation of the brain's attentional control regions - the rostral prefrontal and superior parietal cortex - similar to that of younger adults."

Asked how his team's findings may be useful to older adults in their daily activities, Anderson recommended that older adults try to schedule their most mentally-challenging tasks for the morning time. Those tasks could include doing taxes, taking a test (such as a driver's license renewal), seeing a doctor about a new condition, or cooking an unfamiliar recipe.

In the study, 16 younger adults (aged 19 - 30) and 16 older adults (aged 60-82) participated in a series of memory tests during the afternoon from 1 - 5 p.m. The tests involved studying and recalling a series of picture and word combinations flashed on a computer screen. Irrelevant words linked to certain pictures and irrelevant pictures linked to certain words also flashed on the screen as a distraction. During the testing, participants' brains were scanned with fMRI which allows researchers to detect with great precision which areas of the brain are activated.

Older adults were 10 percent more likely to pay attention to the distracting information than younger adults who were able to successfully focus and block this information. The fMRI data confirmed that older adults showed substantially less engagement of the attentional control areas of the brain compared to younger adults. Indeed, older adults tested in the afternoon were "idling" - showing activations in the default mode (a set of regions that come online primarily when a person is resting or thinking about nothing in particular) indicating that perhaps they were having great difficulty focusing. When a person is fully engaged with focusing, resting state activations are suppressed.

When 18 older adults were morning tested (8:30 a.m. - 10:30 a.m.) they performed noticeably better, according to two separate behavioural measures of inhibitory control. They attended to fewer distracting items than their peers tested at off-peak times of day, closing the age difference gap in performance with younger adults. Importantly, older adults tested in the morning activated the same brain areas young adults did to successfully ignore the distracting information. This suggests that 'when' older adults are tested is important for both how they perform and what brain activity one should expert to see.

"Our research is consistent with previous science reports showing that at a time of day that matches circadian arousal patterns, older adults are able to resist distraction," said Dr. Lynn Hasher, senior author on the paper and a leading authority in attention and inhibitory functioning in younger and older adults.

The Baycrest findings offer a cautionary flag to those who study cognitive function in older adults. "Since older adults tend to be morning-type people, ignoring time of day when testing them on some tasks may create an inaccurate picture of age differences in brain function," said Dr. Hasher, senior scientist at Baycrest's Rotman Research Institute and Professor of Psychology at University of Toronto.
-end-
The Baycrest study was funded by the Canadian Institutes for Health Research, and the Natural Sciences and Engineering Research Council.

Baycrest Centre for Geriatric Care

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.