HSCI researchers identify another potential ALS treatment avenue

August 06, 2014

Cambridge, MA, Aug 6 - A series of studies begun by Harvard Stem Cell Institute (HSCI) scientists eight years ago has lead to a report published today that may be a major step forward in the quest to develop real treatments for amyotrophic lateral sclerosis, ALS, or Lou Gehrig's disease.

The findings by Harvard professor of Stem Cell and Regenerative Biology (HSCRB) Kevin Eggan and colleagues also has produced functionally identical results in human motor neurons in a laboratory dish and in a mouse model of the disease, demonstrating that the modeling of human disease with customized stem cells in the laboratory could someday relatively soon eliminate some of the need for animal testing.

The new study, published today in Science Translational Medicine, suggest that compounds already in clinical trials for other purposes may be promising candidate therapeutics for ALS. The Harvard authors found that genetically intervening in the pathway these drugs act on increased survival time of an ALS animal model 5-10 percent, and while that is a long way from curing the universally fatal neurodegenerative disease, "any ALS patient would be excited about this extended life span," said Eggan, who pioneered the disease in a dish concept.

Sophie De Boer, a graduate student in Eggan's lab, is the first author on the Science Translational Medicine paper.

This latest finding is expected to push towards clinical studies the second major ALS discovery from Eggan's lab in less than a year. The HSCI stem cell biologist, and his neuroscience and neurology collaborators at Massachusetts General Hospital and Boston Children's Hospital, are preparing for a phase I clinical trial of a medication already approved for epilepsy which Eggan and colleagues discovered quiets disease related electrical excitability in the motor neurons effected in ALS.

In a paper in 2007, Eggan and colleagues demonstrated that glial cells, background cells in the nervous system, were involved in motor neuron degeneration in a mouse model of ALS. And the following year the researchers reported that the same thing was happening in human motor neurons made from patient stem cells, and proposed that prostanoid molecules, a group of substances involved in inflammation in everything from pain to pregnancy, might be playing a role in the glial cells.

Today the researchers reported they have confirmed there is a change in prostanoid receptors in the gial cells playing a role in ALS, and with genetic and chemical experiments they showed that this is playing a role in ALS. They further report that when the effected receptor is blocked, the ALS damage done by the glial cells is reduced.

This latest work, says Eggan, first done in human motor neurons in a dish, and then in a mouse model of ALS, "says that indeed this stem cell model was predictive of something that can happen inside a whole animal, and its important because it demonstrates that this is really an important target for an ALS therapeutic. If we can inhibit this receptor in an ALS patient, we might slow down the progression of the disease, and that would be a huge step."

Eggan said "one feature of the glial cells in ALS that attack motor neurons is that they have higher expression of this prostanoid receptor. Removing just one of the two copies of the receptor in the glial cells had an effect on extending the life span" of the ALS mice," Eggan said, and "inhibition by a drug is unlikely to have an effect as complete as a knockout in the mice."

Eggan said that experiments on human stem cell-generated ALS motor neurons also show that "if we inhibit that receptor in the ALS cells with a chemical, those cells lose their toxicity to motor neurons

"This is a very exciting period for those whose lives are threatened by ALS, and it is exciting for my lab," Eggan said. "First we recently identified a pathway that we think is important for degeneration inside the motor neuron, and now we've found this pathway in cells outside the motor neuron. This has potential to have a very substantial effect on what's happening in ALS."

The research was funded by Project ALS, the New York Stem Cell Foundation, P2ALS, and the Howard Hughes Medical Institute.
-end-


Contact:


B. D. Colen
bd_colen@harvard.edu
617-495-7821 / / 617-413-1224 - cell

Harvard University

Related Stem Cell Articles from Brightsurf:

Fat cell hormone boosts potential of stem cell therapy
Mesenchymal stem cell (MSC) therapy has shown promising results in the treatment of conditions ranging from liver cirrhosis to retinal damage, but results can be variable.

Oncotarget Characterization of iPS87, a prostate cancer stem cell-like cell line
Oncotarget Volume 11, Issue 12 reported outside its natural niche, the cultured prostate cancer stem cells lost their tumor-inducing capability and stem cell marker expression after approximately 8 transfers at a 1:3 split ratio.

Stem cell identity unmasked by single cell sequencing technology
Scientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.

It's all about the (stem cell) neighborhood
Researchers at Duke-NUS Medical School have now identified how the stem cell neighbourhood, known as a niche, keeps stem cells in the gut alive.

Spaceflight activates cell changes with implications for stem cell-based heart repair
A new study of the effects of spaceflight on the development of heart cells identified changes in calcium signaling that could be used to develop stem cell-based therapies for cardiac repair.

Not just a stem cell marker
The protein CD34 is predominantly regarded as a marker of blood-forming stem cells but it helps with migration to the bone marrow too.

Interferon-beta producing stem cell-derived immune cell therapy on liver cancer
Induced pluripotent stem (iPS) cell-derived myeloid cells (iPS-ML) that produce the anti-tumor protein interferon-beta (IFN-beta) have been produced and analyzed by researchers from Kumamoto University, Japan.

Scientists aim to create the world's largest sickle cell disease stem cell library
Scientists at the Center for Regenerative Medicine at Boston Medical Center and Boston University School of Medicine are creating an induced pluripotent stem cell (iPSC)-based research library that opens the door to invaluable sickle cell disease research and novel therapy development.

Designer switches of cell fate could streamline stem cell biology
Researchers at the University of Wisconsin-Madison have developed a novel strategy to reprogram cells from one type to another in a more efficient and less biased manner than previous methods.

Allen Institute for cell science releases gene edited human stem cell lines
The Allen Institute for Cell Science has released the Allen Cell Collection: the first publicly available collection of gene edited, fluorescently tagged human induced pluripotent stem cells that target key cellular structures with unprecedented clarity.

Read More: Stem Cell News and Stem Cell Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.