Scientists discover how 'jumping genes' help black truffles adapt to their environment

August 06, 2014

Black truffles, also known as Périgord truffles, grow in symbiosis with the roots of oak and hazelnut trees. In the world of haute cuisine, they are expensive and highly prized.

In the world of epigenetics, however, the fungi (Tuber melanosporum) are of major interest for another reason: their unique pattern of DNA methylation, a biochemical process that chemically modifies nucleic acids without changing their sequence. Epigenetics is the study of changes in gene expression caused by mechanisms other than changes in the DNA sequence.

A newly published study in the journal Genome Biology by scientists from UCLA and colleagues in Italy, France and Taiwan reports on the truffle's unique genetic makeup.

"The fungi have a complex genome, with a preponderance of repetitive and mobile elements," said Simone Ottonello of the laboratory of functional genomics and protein engineering at the University of Parma in Italy. "The genome resembles the composition of the human genome, which also uses reversible methylation -- and other mechanisms -- to deal with repeated and mobile elements."

More than 58 percent of Tuber melanosporum's genetic material is made up of so-called "jumping genes," transposable genetic elements, or transposons, that can replicate and paste themselves throughout the genome. The research illustrates how the truffle regulates those elements.

"We found that DNA methylation is targeted to those transposable elements, but it also can affect the expression of adjacent genes and the number of transposons that are copied," said Matteo Pellegrini, a professor of molecular, cell and developmental biology in the UCLA College, and the paper's senior author.

The black truffle uses reversible epigenetic processes to regulate its genes and adapt to changes in its surroundings. Although this process was known to occur in other plants and animals, this was the first research to establish that it occurs in fungi.

Pellegrini said the new findings could shed light on how the reversible methylation helps the truffle adapt to its surroundings. "Because the truffle lives underground and doesn't have an active spore dispersal system, it might need this plasticity to adapt to sudden environmental changes."
-end-
The study's lead author was Barbara Montanini, a research associate in Ottonello's laboratory. Co-authors included Pao-Yang Chen, a UCLA assistant researcher in molecular, cell and developmental biology, and scientists from Taiwan's Academia Sinica and the French National Institute for Agricultural Research (INRA).

The research was funded by the UCLA-DOE Institute for Genomics and Proteomics, the Fondazione Cariparma and Italy's Ministry of Education, University and Research.

The article is available for free under the journal's open access policy.

University of California - Los Angeles

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.