Nav: Home

Scientists develop unique materials to repair damaged organs and tissue

August 06, 2018

Tissue engineering is the future of medicine. Under Project 5-100, the Polymer Materials for Tissue Engineering and Transplantology Laboratory of Peter the Great St. Petersburg Polytechnic University (SPbPU) created unique polymeric materials for medical purposes that repair traumatized human organs.

The laboratory specialists developed a three-dimensional porous material made of collagen and chitosan, an analog of bone tissue. Using this material, the researchers can restore parts of bone lost as a result of trauma or illness.

According to the scientists, this is a completely new medical area not only in Russia but in the whole world. The terminology has not yet been defined. They are currently called "mimicking" materials, as they trick the body. The polymer matrix is implanted into damaged liver tissue, bones or vessels, saturated with the cells of these organs. Since the materials are made from biocompatible components (chitosan and collagen), the body is tricked and does not reject the foreign object. Over time, the matrix decomposes and the artificial tissue is replaced by natural tissue.

"We are not deceiving nature, we are just helping it to cope with a medical problem. Experts are currently debating whether it is better to use an implant or restore an organ. A person with an artificial organ must take medication for the rest of their lifetime to prevent the body from rejecting it. This is not the case for tissue grown from human cells," explains Vladimir Yudin, Head of the Laboratory.

The development of artificial organs for transplantology is an urgent priority of modern medicine. The successful development of this area largely depends on the creation of biocompatible and bioresorbable polymer materials. The scientists of St. Petersburg Polytechnic University have not only developed the technology to create biocompatible materials that stimulate the restoration of natural tissues, but also managed to regulate the resorption time of the materials. It is very important for the implanted materials not to disintegrate before the new fabric is formed.

The results of preclinical studies showed that after a certain period of time, a three-dimensional sponge embedded in a bone starts to become covered with natural bone tissue, while the material itself decomposes. In addition, the developed collagen sponge was studied both in liver tissues and in muscle tissue - the material also stimulated the restoration of the natural tissue of the organs. The latest research results are described in the article "Bioresorption of Porous 3D Matrices Based on Collagen in Liver and Muscular Tissue" published in the journal Cell and Tissue Biology.

The researchers also developed wound covers, prostheses of blood vessels, and suture threads. In vivo preclinical trials were conducted with these materials, and the results proved that they are effective. The materials are recommended for use in tissue engineering and cellular transplantation.
-end-
This is a joint project of Peter the Great St. Petersburg Polytechnic University in collaboration with the Institute of Cytology of the Russian Academy of Sciences.

Starting from 2013, Russia has been implementing Project 5-100, - a state support program for Russian universities. Its goal is to raise the standing of Russian higher education and have at least five member universities in the top-100 of three respected world rankings. Project 5-100 is enabling 21 Russian universities to move forward in terms of effectively strengthening their education and research, promoting innovations and R&D, facilitating international cooperation, streamlining administration, balancing the authority of the management and academics, nurturing a proactive academic environment, increasing internationalization, providing sufficient incentives for attracting the top professors from around the world and also for the existing faculty's professional growth.

As part of Project 5-100, SPbPU invents, applies and distributes world-class cross-disciplinary polytechnic knowledge, supra-sectoral knowledge-intensive and advanced manufacturing technologies. The University actively develops conceptual solutions for organizing business processes for the entire lifecycle of a product using state-of-the-art technology in all industries that dramatically increase the efficiency of design, preparation of production facilities and manufacture of customized products.

Peter the Great Saint-Petersburg Polytechnic University

Related Tissue Engineering Articles:

Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
RIT awarded $1.8 million NIH grant to develop ultrathin membranes for tissue engineering
Researchers at Rochester Institute of Technology are advancing tissue engineering through new work in developing improved porous membranes that will be the 'scaffolds,' or foundational structures, for in vitro tissue models.
Iowa State researchers fabricate microfibers for single-cell studies, tissue engineering
Iowa State University researchers are using the science of microfluidics -- the study of fluids moving through channels just a millionth of a meter wide -- to design and fabricate microfiber scaffolds that support cell growth and tissue engineering.
Breakthrough for bone regeneration via double-cell-layered tissue engineering technique
Tokyo Medical and Dental University researchers developed a technique for attaching two distinct layers of cells on top of each other on an amnion-based scaffold.
A novel hybrid polymer simplifies 3-D printing of scaffolds for tissue engineering
A new study describes the development of a novel hybrid polymer suitable for producing 3-D-printed scaffolds on which living cells can be seeded to create engineered tissues.
Engineering adult stem cells to regenerate tissue twice as fast
Kelly Schultz, assistant professor of chemical and biomolecular engineering at Lehigh University, received a three-year NIH grant to study how cells remodel their microenvironment -- a crucial step toward engineering cells to move through synthetic material and tissue more quickly for faster wound healing and tissue regeneration.
Lasers carve the path to tissue engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3-D space, overcoming major limitations to tissue engineering.
Challenges of custom-engineering living tissue to fix a heart
Jianyi 'Jay' Zhang, M.D., Ph.D., works to create new tissue that can replace or protect damaged muscle after a heart attack.
Clay nanotube-biopolymer composite scaffolds for tissue engineering
Scientists of Bionanotechnology Lab, Kazan Federal University, combined three biopolymers, chitosan and agarose (polysaccharides), and a protein gelatine, as the materials to produce tissue engineering scaffolds and demonstrated the enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite.

Related Tissue Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"