Nav: Home

Size matters: if you are a bubble of volcanic gas

August 06, 2018

The chemical composition of gases emitted from volcanoes - which are used to monitor changes in volcanic activity - can change depending on the size of gas bubbles rising to the surface, and relate to the way in which they erupt. The results, published in the journal Nature Geoscience, could be used to improve the forecasting of threats posed by certain volcanoes.

A team of scientists, including a volcanologist and mathematician from the University of Cambridge, discovered the phenomenon through detailed observations of gas emissions from K?lauea volcano in Hawaii.

At many volcanoes around the world, gas emissions are monitored routinely to help with forecasting eruptions. Changes in the output or proportions of different gases - such as carbon dioxide and sulphur dioxide - can herald shifts in the activity of a volcano. Volcanologists have considered that these chemical changes reflect the rise and fall of magma in the Earth's crust but the new research reveals that the composition of volcanic gases depends also on the size of the gas bubbles rising up to the surface.

Until the latest spectacular eruption opened up fissures on the flank of the volcano, K?lauea held a vast lava lake in its summit crater. The behaviour of this lava lake alternated between phases of fiery 'spattering' powered by large gas bubbles bursting through the magma, and more gentle gas release, accompanied by slow and steady motion of the lava.

In the past, volcanic gases have been sampled directly from steaming vents and openings called fumaroles. But this is not possible for the emissions from a lava lake, 200 metres across, and at the bottom of a steep-sided crater. Instead, the team used an infrared spectrometer, which is employed for routine volcano monitoring by co-authors of the study, Jeff Sutton and Tamar Elias from the Hawaiian Volcano Observatory (US Geological Survey).

The device was located on the edge of the crater, pointed at the lava lake, and recorded gas compositions in the atmosphere every few seconds. The emissions of carbon- and sulphur-bearing gases were measured during both the vigorous and mild phases of activity.

Each individual measurement was used to compute the temperature of the volcanic gas. What immediately struck the scientists was that the gas temperatures ranged from 1150 degrees Celsius - the temperature of the lava - down to around 900 degrees Celsius. "At this temperature, the lava would freeze," said lead author Dr Clive Oppenheimer, from Cambridge's Department of Geography. "At first, we couldn't understand how the gases could emerge much colder than the molten lava sloshing in the lake."

The clue to this puzzle came from the variation in calculated gas temperatures - they were high when the lava lake was placid, and low when it was bubbling furiously. "We realised it could be because of the size of the gas bubbles," said co-author Professor Andy Woods, Director of Cambridge's BP Institute. "Larger bubbles rise faster through the magma and expand rapidly as the pressure reduces, just like bubbles rising in a glass of fizzy drink; the gas cools down because of the expansion." Larger bubbles form when smaller bubbles bump into each other and merge.

Woods and Oppenheimer developed a mathematical model to account for the process, which showed a very good fit with the observations.

But there was yet another surprising finding from the gas observations from Hawaii. As well as being cooler, the emissions from the large gas bubbles were more oxidised than expected - they had higher proportions of carbon dioxide to carbon monoxide.

The chemical balance of volcanic gases such as carbon dioxide and carbon monoxide (or sulphur dioxide and hydrogen sulphide) is generally thought to be controlled by the chemistry of the surrounding liquid magma but what the new findings showed is that when bubbles get large enough, most of the gas inside follows its own chemical pathway as the gas cools.

The ratio of carbon dioxide to carbon monoxide when the lava lake was in its most energetic state was six times higher than during the most stable phase. The scientists suggest this effect should be taken into account when gas measurements are being used to forecast major changes in volcanic activity.

"Gas measurements are critical to our monitoring and hazard assessment; refining our understanding of how magma behaves beneath the volcano allows us to better interpret our observations," said co-author Tamar Elias from the Hawaiian Volcano Observatory.

And there is another implication of this discovery - not for eruptions today but for the evolution of the Earth's atmosphere billions of years ago. "Volcanic emissions in Earth's deep past may have made the atmosphere more oxidising than we thought," said co-author Bruno Scaillet. "A more oxygen-rich atmosphere would have facilitated the emergence and viability of life on land, by generating an ozone layer, which shields against harmful ultraviolet rays from the sun."
-end-


University of Cambridge

Related Volcano Articles:

Death by volcano?
he discovery of anomalously high levels of mercury in rocks from the Ordivician geological period has led to a new interpretation of the ensuing mass extinction.
Campi Flegrei volcano eruption possibly closer than thought
The Campi Flegrei volcano in southern Italy may be closer to an eruption than previously thought, according to new research by UCL and the Vesuvius Observatory in Naples.
How a young-looking lunar volcano hides its true age
A young-looking volcanic caldera on the moon has been interpreted by some as evidence of relatively recent lunar volcanic activity, but new research suggests it's not so young after all.
Mars volcano, Earth's dinosaurs went extinct about the same time
Arsia Mons produced one new lava flow at its summit every 1 to 3 million years during the final peak of activity, about 50 million years ago.
Volcano breath: Measuring sulfur dioxide from space
In a new study published in Scientific Reports this week, a team led by researchers from Michigan Technological University created the first, truly global inventory for volcanic sulfur dioxide emissions, using data from the Dutch-Finnish Ozone Monitoring Instrument on NASA's Earth Observing System Aura satellite launched in 2004.
Volcano Samalas mystery revealed
The international team of scientists with the participation of Krasnoyarsk dendrochronologists offered their answer to one of the mysteries of climatology and volcanology.
Underwater volcano's eruption captured in exquisite detail by seafloor observatory
Seismic data from the 2015 eruption of Axial Volcano, an underwater volcano about 300 miles off the Oregon coast, has provided the clearest look at the inner workings of a volcano where two ocean plates are moving apart.
Island volcano monitoring system tested at Nishinoshima
In October 2016 a Japanese research team tested a newly-developed island volcano monitoring system in the seas around Nishinoshima, where eruptions have been continuing since November 2013.
Massive 'lake' discovered under volcano that could unlock why and how volcanoes erupt
Scientists from the University of Bristol and partner universities in Germany, France, Canada and Wales, have discovered a huge magmatic lake, 15 km below a dormant volcano in Bolivia, South America.
Gas causing ground to rise near Bay of Naples volcano
New work by Italian geochemists seems to indicate that the current ground movement around one of the world's most dangerous volcano systems may be due to gas pressure, and not because of a surge of volcanic magma.

Related Volcano Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...