Nav: Home

Striking a balance between immunity and inflammation

August 06, 2018

RIVERSIDE, Calif. (http://www.ucr.edu) -- Hookworms infect nearly 430 million people in the world, mostly in countries where sanitation is poor, and people often walk barefoot.

The body's immune system is critical to attacking the hookworm, resulting in damage to the body's tissues. But just how this damage takes place -- and what helps repair it -- is not fully understood.

Working on a mouse model, a research team of biomedical scientists at the University of California, Riverside, has found a piece of the puzzle: secretion of the immune protein RELMalpha that is triggered in the body, following infection, to protect tissue.

The researchers knocked out, or turned off, RELMalpha from immune cells and found that the mice produced super-killer macrophages -- important cells of the immune system formed in response to an infection. The team found that the macrophages attached to the hookworm in far greater numbers, making them super killers. However, this came at a cost to the host: the macrophages with knocked-out RELMalpha provoked increased tissue damage and inflammation.

"What this shows is that macrophages that kill the hookworm also cause inflammation and damage to the host tissue," said Meera G. Nair, an expert on hookworm and other helminth infections and assistant professor of biomedical sciences at UCR's School of Medicine, who led the research that appears in the September issue of the Journal of Leukocyte Biology. "Our study is the first to identify the role these macrophages play. In wild type mice, where hookworm infection produces RELMalpha, tissue damage by macrophages is balanced by RELMalpha-induced reduction in inflammation."

Balancing act

RELM, or "resistin-like molecules," constitute a family of proteins, including RELMalpha, that are secreted by mammals and highly expressed in infectious and inflammatory diseases.

Nair explained that without RELMalpha, the immune system kills the hookworms more efficiently, with the macrophages having better adhesion to the worms.

"But RELMalpha plays the important role of downregulating inflammation, thus ensuring the host survives," she said. "Clearly, the mouse needs RELMalpha as well. It's a question of balance between immunity and inflammation. Pathways are turned on that could kill the worms without causing the kind of inflammation that could be devastating to the host as well. Our study identifies some of these pathways. In a nutshell, we have identified an anti-inflammatory, wound-healing macrophage subset that regulates inflammation through expression of RELMalpha."

Nair explained that the super-killer macrophages make more migratory chemokines -- signaling proteins secreted by cells of the immune system that stimulate the movement of other cells -- that allow them to efficiently find the worms. The macrophages make more adhesion proteins that allow them to better adhere to the worms, and they also make more toxic chemicals that enable them to kill the worm.

By downregulating inflammation, RELMalpha delays the mouse's ability to kill the pathogen -- the hookworm in this case -- and protects the mouse from excessive tissue damage and inflammation, she noted.

"Mammals have evolved with pathogens to assess the cost of killing a pathogen. Mammals turn on disease tolerance to stop the damage by the pathogen. But they also need to turn on tolerance to stop the damage by the immune system. What is sought is optimal balance. This may mean living with little bit of hookworm may be a better infection outcome," Nair said.

This explains why hookworms are being used in therapy to address celiac disease; between 10-20 infectious larvae are introduced into the patient's body to ease inflammation caused by the disease.

Domestic impact

In the United States, hookworm is a disease found in impoverished areas. In one study site in Alabama, 34 percent of children recently were found to have hookworm eggs in their feces. In addition to pulmonary symptoms, hookworms cause iron deficiency, impair cognitive development, and lead to stunted growth in children. Because they feed on blood, anemia and fatigue often follow. Indeed, in the 1900s, hookworm infection was called "lazy disease."

Hookworms are about 5 millimeters in length. After penetrating the skin, often through bare feet, hookworms travel in the bloodstream to the lungs. When they are coughed up and swallowed, they land in the gut. Hookworms do not reproduce in the body; their eggs are produced and lodged in feces, hatching outside the body.
-end-
Nair's co-authors on the paper are Hashini M. Batugedara (first author), Jiang Li, Gang Chen, Dihong Lu, Jay J. Patel, Jessica C. Jang, Kelly C. Radecki, Abigail C. Burr, David D. Lo, and Adler R. Dillman.

The research was supported largely by grants from the National Institutes of Health. The UCR School of Medicine and Academic Senate provided some financial assistance.

A RELM review

Earlier this year, Nair and colleagues published a review paper in the journal Cytokine that focused on RELM.

"We discuss the discovery of these proteins in inflammatory diseases -- asthma, autoimmune disease, sepsis -- and conclusions that other researchers made that these proteins may be pathogenic in promoting inflammation," Nair said. "But recent studies, including our own, suggest that RELM have more nuanced roles, including a beneficial role in dampening inflammation, promoting tissue repair, and killing pathogens. These findings better explain why we would have evolved to express such high quantities of these proteins."

The review underscores the disease tolerance concept, namely, that a host has evolved to evaluate the cost of killing a pathogen versus the amount of tissue damage it could cause.

"Understanding the complex biology of RELM proteins and how to shift this balance from pathogenic to protective could have important clinical implications," Nair said. "Beyond expression in inflammatory and infectious disease, these proteins are also found in cancer and metabolic disease, expanding the breadth of disease outcomes they may influence."

On the move

Nair is a member of a growing team of infectious-disease researchers at UCR. Next year, she and several members of the group are slated to move into a new building on campus to enhance UCR's strength in pathogenesis. In June 2019, Nair will teach a two-week course on parasites at the Marine Biological Laboratory, an international center for research and education in biological and environmental science in Woods Hole, Mass.; the course is open for enrollment.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is now nearly 23,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

University of California - Riverside

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...