Nav: Home

Rapid diagnostic coupled with local therapy developed for brain tumors

August 06, 2018

In the race to deliver therapeutics to treat brain cancer and prevent recurrence, the blood-brain barrier represents a tremendous hurdle. But brain surgery offers a way to circumvent the blood-brain barrier, allowing direct access to the site of a tumor. Working together, researchers from Brigham and Women's Hospital (BWH) and neurosurgeons from Massachusetts General Hospital (MGH), along with colleagues at MIT, are designing a new, rapid molecular diagnostic and sustained release therapeutic that could be deployed during brain surgery to treat gliomas and prevent their return. Their results are published this week in the Proceedings of the National Academy of the Sciences.

"When a patient is in the operating room, there's an ideal opportunity to deliver therapy," said co-senior author Giovanni Traverso, MB, BChir, PhD, principal investigator and a physician-scientist at BWH. "But to provide the best possible therapy, we need to understand what genetic mutations we can target in that person's tumor. We're trying to develop a molecular diagnostic that can work fast enough to give us that information while the patient is on the operating table."

"The first and perhaps most important step in treatment of brain tumors is the initial operation, or craniotomy, which obtains tissue to make the diagnosis, and, for lower grade lesions, provides a therapeutic benefit from removal of the tumor mass," said co-senior author Daniel Cahill, MD, PhD, associate professor of neurosurgery at MGH. "Prior studies from our group, and others, have shown that aggressive surgery provides a substantial survival benefit for patients with lower-grade gliomas. We sought to build upon this surgical scenario, attempting to further prolong survival for these patients."

Lower grade gliomas, as opposed to high-grade gliomas such as glioblastoma, tend to initially be benign but can cause disability, seizures and fatality as they grow and compress normal brain tissue. Lower grade gliomas also frequently recur and, over time, can transform into malignant brain cancer as they acquire mutations.

Recent studies have found that many lower grade gliomas harbor IDH1 and IDH2 mutations - genetic alterations that may make cancer cells vulnerable to metabolic therapeutics. However, those therapies can have toxic side effects if delivered via traditional routes.

To overcome these challenges and take advantage of the unique opportunity offered when a patient undergoes surgery to remove a glioma, Traverso, Cahill and colleagues developed a rapid genetic test that can determine if a tumor harbors an IDH1 or IDH2 mutation or several other mutations. Using previously collected patient samples, the team tested their rapid genotyping assay and found that that they could detect mutations within 27 minutes. For 75 of the 87 clinically annotated brain tumor specimens tested, the team captured the presence of one or more mutations.

In addition to the rapid diagnostic, the team has also developed a sustained release microparticle drug delivery system that can provide localized treatment and sustained protection. The team tested this delivery system in a mouse model and reported significant improvements in survival time.

The team noted that further testing of the microparticle system is needed to select the optimal formulation to advance into future clinical trials. Exploring combination therapies could further improve the effects of their local therapy approach.
-end-
This work is supported by the American Brain Tumor Association Basic Research Fellowship, the Humor to Fight the Tumor Committee, SPORE grant P50CA165962, Burroughs Wellcome Career Award in the Medical Sciences #1007616.02, NIH grant EB-000244 and the Division of Gastroenterology, Brigham and Women's Hospital. A provisional patent application for this technology has been filed.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $900 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, genomic medicine, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2017 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 4.2 million annual patient visits and nearly 46,000 inpatient stays, is the largest birthing center in Massachusetts and employs nearly 16,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 3,000 researchers, including physician-investigators and renowned biomedical scientists and faculty supported by nearly $666 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative as well as the TIMI Study Group, one of the premier cardiovascular clinical trials groups. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Brigham and Women's Hospital

Related Brain Tumors Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Study: New approach to destroying deadly brain tumors
A new strategy for treating brain tumors may extend or save the lives of patients diagnosed with one of the deadliest forms of cancer, according to a study from UT Southwestern Medical Center.
Attacking metastatic tumors in the brain
Rakesh Jain, Ph.D., Director of the Edwin L. Steele Laboratory for Tumor Biology at the Massachusetts General Hospital and supported by the National Foundation for Cancer Research, has discovered a novel mechanism behind the resistance to HER2- or PI3K-targeted therapies, and a treatment strategy that may overcome treatment resistance.
Study provides better understanding of how brain tumors 'feed'
All cancer tumors have one thing in common - they must feed themselves to grow and spread, a difficult feat since they are usually in a tumor microenvironment with limited nutrients and oxygen.
Survivors of childhood brain tumors have increased body fat
These findings suggest that one of the most important risk factors for heart disease and type 2 diabetes, which is excess total and central fat in the body, is present relatively early in survivors of childhood brain tumors.
Targeted radiosurgery better than whole-brain radiation for treating brain tumors
Tumors that originate in other organs of the body and spread to the brain are known as metastatic brain tumors.
Tumor-seeking salmonella treats brain tumors
Genetic tweaks to salmonella turn the bacteria into cancer-seeking missiles that produce self-destruct orders deep within tumors.
Stereotactic radiosurgery may be best for patients with metastatic brain tumors
Patients with three or fewer metastatic brain tumors who received treatment with stereotactic radiosurgery had less cognitive deterioration three months after treatment than patients who received SRS combined with whole brain radiation therapy.
Novel antibody against brain tumors
Scientists of Helmholtz Zentrum München and the Munich University Hospital (LMU) are developing a novel antibody to treat brain tumors.
MicroRNAs help to predict disease progression in brain tumors
Scientists at the Helmholtz Zentrum München and the Ludwig Maximilians University of Munich have developed a new method of predicting disease progression in gliobastoma patients who have undergone standard treatment.

Related Brain Tumors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...