Nav: Home

Thanks to climate change & wetter weather, forest soils are absorbing less methane

August 06, 2018

(Millbrook, NY) Farming, energy production, and landfills produce methane, a potent greenhouse gas. Forests can remove methane from the atmosphere through the activity of soil bacteria. But increasing precipitation - a symptom of climate change - is making it harder for forest soils to trap greenhouse gases, creating a feedback loop that exacerbates global warming.

So reports a new study, published today in the Proceedings of the National Academy of Sciences, which concludes that forest soils have been overestimated as methane sinks by upwards of 50% worldwide. Few studies have quantified this process using long-term data.

Study coauthor Peter Groffman, a Senior Research Fellow at Cary Institute of Ecosystem Studies and a professor at the City University of New York Advanced Science Research Center at the Graduate Center, explains, "We were interested in how methane uptake by forest soils was influenced by environmental change. Do things like soil temperature, nitrogen, or rainfall impact forest soil's ability to act as a methane sink? And how does this play out over time?"

The Takeaway

Data on forest soil methane uptake was collected from two very different US National Science Foundation funded Long-Term Ecological Research sites. Hubbard Brook Experimental Forest is located in the White Mountains of New Hampshire, while the Baltimore Ecosystem Study encompasses Baltimore County, Maryland. Monitoring was conducted for 14 and 18 years, respectively.

Patterns observed at these locations were compared to global forest soil methane uptake data recorded from 1988-2015. Results were clear: methane absorption by upland forest soils is declining globally, especially in regions where precipitation is increasing.

"These findings suggest that global budgets for atmospheric methane - which are used to inform policy around methane-producing activities - are overestimating the role that forest soils play in trapping gas," Groffman cautions. "Declining methane uptake by forest soils should be factored into these models to avoid exacerbating climate warming, as methane in the atmosphere may rise more quickly and reach higher levels than current models predict."

Shrinking methane sinks, in the country and the city

At the Baltimore Ecosystem Study site, researchers monitored forests at four urban and four comparatively rural sites from 1998-2016. At Hubbard Brook Experimental Forest, soil methane uptake was measured at eight forested sites from 2002-2015. These measurements comprise the longest-running record of methane uptake by forest soils.

Over an 18-year period, methane uptake by urban forests in Baltimore declined by 62%; methane uptake by rural forests declined by 53%. At Hubbard Brook, over a 14-year period, methane uptake by forest soils fell by 74-89%.

During this timespan, average temperature and atmospheric methane concentrations increased while nitrogen deposition decreased. These three factors should have caused an increase in forest soil methane uptake.

Scaling up: A global perspective

The authors analyzed 317 peer-reviewed journal articles on soil methane uptake in the world's forests published between 1987 and 2015. These records were used to estimate mean methane uptake in forests in 30° latitude bands across the globe - with the goal of examining changes in precipitation and methane uptake in the context of latitudes.

During the timeframe of the analysis, methane uptake by forest soils dropped by 77%. Declines were most acute in forests located between 0-60°N latitude, where precipitation has steadily increased as a result of climate change.

Methanotrophs matter

Why is methane uptake in forest soils reduced when soils are wetter? The answer lies in soil bacteria. Well-drained upland forest soils are home to methane-consuming bacteria called methanotrophs. These bacteria need access to methane in the atmosphere to survive. When soils are wet, diffusion of atmospheric methane into the soil is inhibited, reducing bacterial uptake.

Accounting for wetter soils

Precipitation is projected to continue to increase due to climate change, further reducing forest soils' capacity to mitigate rising atmospheric methane emissions.

Lead author Xiangyin Ni of Sichuan Agricultural University notes, "Long-term changes in precipitation and forest soil methane uptake should be factored into models being used to inform policy decisions around methane-producing activities - to ensure that we're using the most accurate tools available to account for methane sources and sinks."

Steve Hamburg, Chief Scientist at the Environmental Defense Fund, explains, "It is increasingly clear that reducing human-caused methane emissions is essential to reducing the risk of climate change. Towards that end, we need a better understanding of the global methane budget and the causes of the increases in atmospheric concentrations. Understanding that the global forest soil sink is weakening is a potentially important piece of the puzzle."

"This study shows large, long-term declines in the ability of soil to absorb methane," says Doug Levey, a director of the National Science Foundation's Long-Term Ecological Research program, which funded the research. "That can explain why the amount of methane, a potent greenhouse gas, has been increasing in the atmosphere. The results uncover an important link among the soil, the atmosphere, and climate."

Groffman concludes, "We can't rely on natural processes to solve our greenhouse gas problems. Just as trees and oceans may not always be able to absorb carbon dioxide, forest soils may not always be able to take up methane and keep it out of the atmosphere. Long-term data are critical for showing how the capacity and function of Earth's ecosystems are changing - and how we might best respond through management actions."
-end-
Investigators:

Xiangyin Ni - Sichuan Agricultural University

Peter Groffman - Cary Institute of Ecosystem Studies; City University of New York Advanced Science Research Center and Brooklyn College Department of Earth and Environmental Sciences

This study was supported by the National Science Foundation Long-Term Ecological Research program.

Cary Institute of Ecosystem Studies is an independent nonprofit center for environmental research. Since 1983, our scientists have been investigating the complex interactions that govern the natural world. Their findings lead to more effective management and policy actions and increased environmental literacy. Our staff are global experts in freshwater and forest health, disease ecology, urban ecology, and climate change.

Cary Institute of Ecosystem Studies

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".