Anode material for safe batteries with a long cycle life

August 06, 2020

Researchers at Karlsruhe Institute of Technology (KIT) and Jilin University in Changchun/China investigated a highly promising anode material for future high-performance batteries - lithium lanthanum titanate with a perovskite crystal structure (LLTO). As the team reported in the Nature Communications journal, LLTO can improve the energy density, power density, charging rate, safety, and cycle life of batteries without requiring a decrease of the particle size from micro to nano scale. (DOI: 10.1038/s41467-020-17233-1)

The demand for electric vehicles is increasing, accompanied by a growing need for smart grids that ensure a sustainable energy supply. These and other mobile and stationary technologies require suitable batteries. Storing as much energy as possible in the smallest possible space with the lowest possible weight - lithium-ion batteries (LIB) still meet this requirement best. The research aims at improving the energy density, power density, safety, and cycle life of these batteries. The electrode material is of major importance here. Anodes of lithium-ion batteries consist of a current collector and an active material applied to it that stores energy in the form of chemical bonds. In most cases, graphite is used as the active material. However, negative electrodes made of graphite have a low charging rate. Moreover, they are associated with safety issues. Among the alternative active materials, lithium titanate oxide (LTO) has already been commercialized. Negative electrodes with LTO present a higher charging rate and are considered to be safer than those made of graphite. The drawback is that lithium-ion batteries with lithium titanate oxide tend to have a lower energy density.

The demand for electric vehicles is increasing, accompanied by a growing need for smart grids that ensure a sustainable energy supply. These and other mobile and stationary technologies require suitable batteries. Storing as much energy as possible in the smallest possible space with the lowest possible weight - lithium-ion batteries (LIB) still meet this requirement best. The research aims at improving the energy density, power density, safety, and cycle life of these batteries. The electrode material is of major importance here. Anodes of lithium-ion batteries consist of a current collector and an active material applied to it that stores energy in the form of chemical bonds. In most cases, graphite is used as the active material. However, negative electrodes made of graphite have a low charging rate. Moreover, they are associated with safety issues. Among the alternative active materials, lithium titanate oxide (LTO) has already been commercialized. Negative electrodes with LTO present a higher charging rate and are considered to be safer than those made of graphite. The drawback is that lithium-ion batteries with lithium titanate oxide tend to have a lower energy density.

The team around Professor Helmut Ehrenberg, head of the Institute for Applied Materials - Energy Storage Systems (IAM-ESS) of KIT, now investigated another highly promising anode material: lithium lanthanum titanate with a perovskite crystal structure (LLTO). According to the study, which was carried out in collaboration with scientists from Jilin University in Changchun (China) and other research institutes in China and Singapore, LLTO anodes have a lower electrode potential compared to commercialized LTO anodes, which allows for a higher cell voltage and a higher capacity. "Cell voltage and storage capacity ultimately determine the energy density of a battery," explains Ehrenberg. "In the future, LLTO anodes might be used to build particularly safe high-performance cells with a long cycle life." The study contributes to the work of the research platform for electrochemical storage, CELEST (Center for Electrochemical Energy Storage Ulm & Karlsruhe), one of the largest battery research platforms worldwide, which also includes the POLiS excellence cluster.

Besides energy density, power density, safety and cycle life, the charging rate is another determining factor for the suitability of a battery for demanding applications. In principle, the maximum discharge current and the minimum charging time depend on the ion and electron transport both within the solid body and at the interfaces between the electrode and electrolyte materials. To improve the charging rate, it is common practice to reduce the particle size of the electrode material from micro to nano scale. The study, which was published in the Nature Communications journal by KIT researchers and their cooperation partners, shows that even particles of a few micrometers in size in LLTOs with a perovskite structure feature a higher power density and a better charging rate than LTO nanoparticles. The research team attributes this to the so-called pseudocapacitance of LLTO: Not only are individual electrons attached to this anode material, but also charged ions, which are bound by weak forces and can reversibly transfer charges to the anode. "Thanks to the larger particles, LLTO basically enables simpler and more cost-effective electrode manufacturing processes," explains Ehrenberg.
-end-
Original publication (Open Access):

Lu Zhang, Xiaohua Zhang, Guiying Tian, Qinghua Zhang, Michael Knapp, Helmut Ehrenberg, Gang Chen, Zexiang Shen, Guochun Yang, Lin Gu & Fei Du: Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nature Communications, 2020. DOI: 10.1038/s41467-020-17233-1

More about the KIT Energy Center: http://www.energie.kit.edu

Further material:

Publication in Nature Communications:

https://www.nature.com/articles/s41467-020-17233-1

Being "the Research University in the Helmholtz Association," KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,100 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

This press release is available on the internet at http://www.sek.kit.edu/presse.php

Karlsruher Institut für Technologie (KIT)

Related Batteries Articles from Brightsurf:

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Fast calculation dials in better batteries
A simpler and more efficient way to predict the performance of batteries will lead to better batteries, according to Rice University engineers.

Building the batteries of cells
A new study, led by Dr. Ruchika Anand and Prof.

Researchers create a roadmap to better multivalent batteries
Lithium-ion batteries power everything from mobile phones to laptop computers and electric vehicles, but demand is growing for less expensive and more readily available alternatives.

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.

Read More: Batteries News and Batteries Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.