Nav: Home

Hubble uses Earth as proxy for identifying oxygen on potentially habitable exoplanets

August 06, 2020

Taking advantage of a total lunar eclipse, astronomers using NASA's Hubble Space Telescope have detected Earth's own brand of sunscreen - ozone - in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential "biosignatures" on exoplanets (planets around other stars).

Hubble did not look at Earth directly. Instead, the astronomers used the Moon as a mirror to reflect sunlight, which had passed through Earth's atmosphere, and then reflected back towards Hubble. Using a space telescope for eclipse observations reproduces the conditions under which future telescopes would measure atmospheres of transiting exoplanets. These atmospheres may contain chemicals of interest to astrobiology, the study of and search for life.

Though numerous ground-based observations of this kind have been done previously, this is the first time a total lunar eclipse was captured at ultraviolet wavelengths and from a space telescope. Hubble detected the strong spectral fingerprint of ozone, which absorbs some of the sunlight. Ozone is important to life because it is the source of the protective shield in Earth's atmosphere.

On Earth, photosynthesis over billions of years is responsible for our planet's high oxygen levels and thick ozone layer. That's one reason why scientists think ozone or oxygen could be a sign of life on another planet, and refer to them as biosignatures.

"Finding ozone is significant because it is a photochemical byproduct of molecular oxygen, which is itself a byproduct of life," explained Allison Youngblood of the Laboratory for Atmospheric and Space Physics in Boulder, Colorado, lead researcher of Hubble's observations.

Although ozone in Earth's atmosphere had been detected in previous ground-based observations during lunar eclipses, Hubble's study represents the strongest detection of the molecule to date because ozone - as measured from space with no interference from other chemicals in the Earth's atmosphere - absorbs ultraviolet light so strongly.

Hubble recorded ozone absorbing some of the Sun's ultraviolet radiation that passed through the edge of Earth's atmosphere during a lunar eclipse that occurred on January 20 to 21, 2019. Several other ground-based telescopes also made spectroscopic observations at other wavelengths during the eclipse, searching for more of Earth's atmospheric ingredients, such as oxygen and methane.

"One of NASA's major goals is to identify planets that could support life," Youngblood said. "But how would we know a habitable or an uninhabited planet if we saw one? What would they look like with the techniques that astronomers have at their disposal for characterizing the atmospheres of exoplanets? That's why it's important to develop models of Earth's spectrum as a template for categorizing atmospheres on extrasolar planets."

Her paper is available online in The Astronomical Journal.

Sniffing Out Planetary Atmospheres

The atmospheres of some extrasolar planets can be probed if the alien world passes across the face of its parent star, an event called a transit. During a transit, starlight filters through the backlit exoplanet's atmosphere. (If viewed close up, the planet's silhouette would look like it had a thin, glowing "halo" around it caused by the illuminated atmosphere, just as Earth does when seen from space.)

Chemicals in the atmosphere leave their telltale signature by filtering out certain colors of starlight. Astronomers using Hubble pioneered this technique for probing exoplanets. This is particularly remarkable because extrasolar planets had not yet been discovered when Hubble was launched in 1990 and the space observatory was not initially designed for such experiments.

So far, astronomers have used Hubble to observe the atmospheres of gas giant planets and super-Earths (planets several times Earth's mass) that transit their stars. But terrestrial planets about the size of Earth are much smaller objects and their atmospheres are thinner, like the skin on an apple. Therefore, teasing out these signatures from Earth-sized exoplanets will be much harder.

That's why researchers will need space telescopes much larger than Hubble to collect the feeble starlight passing through these small planets' atmospheres during a transit. These telescopes will need to observe planets for a longer period, many dozens of hours, to build up a strong signal.

To prepare for these bigger telescopes, astronomers decided to conduct experiments on a much closer and only known inhabited terrestrial planet: Earth. Our planet's perfect alignment with the Sun and Moon during a total lunar eclipse mimics the geometry of a terrestrial planet transiting its star.

But the observations were also challenging because the Moon is very bright, and its surface is not a perfect reflector because it is mottled with bright and dark areas. The Moon is also so close to Earth that Hubble had to try and keep a steady eye on one select region, despite the Moon's motion relative to the space observatory. So, Youngblood's team had to account for the Moon's drift in their analysis.

Where There's Ozone, There's Life?

Finding ozone in the skies of a terrestrial extrasolar planet does not guarantee that life exists on the surface. "You would need other spectral signatures in addition to ozone to conclude that there was life on the planet, and these signatures cannot necessarily be seen in ultraviolet light," Youngblood said.

On Earth, ozone is formed naturally when oxygen in the Earth's atmosphere is exposed to strong concentrations of ultraviolet light. Ozone forms a blanket around Earth, protecting it from harsh ultraviolet rays.

"Photosynthesis might be the most productive metabolism that can evolve on any planet, because it is fueled by energy from starlight and uses cosmically abundant elements like water and carbon dioxide," said Giada Arney of NASA's Goddard Space Flight Center in Greenbelt, Maryland, a co-author of the science paper. "These necessary ingredients should be common on habitable planets."

Seasonal variability in the ozone signature also could indicate seasonal biological production of oxygen, just as it does with the growth seasons of plants on Earth.

But ozone can also be produced without the presence of life when nitrogen and oxygen are exposed to sunlight. To increase confidence that a given biosignature is truly produced by life, astronomers must search for combinations of biosignatures. A multiwavelength campaign is needed because each of the many biosignatures are more easily detected at wavelengths specific to those signatures.

"Astronomers will also have to take the developmental stage of the planet into account when looking at younger stars with young planets. If you wanted to detect oxygen or ozone from a planet similar to the early Earth, when there was less oxygen in our atmosphere, the spectral features in optical and infrared light aren't strong enough," Arney explained. "We think Earth had low concentrations of ozone before the mid-Proterozoic geological period (between roughly 2.0 billion to 0.7 billion years ago) when photosynthesis contributed to the build up of oxygen and ozone in the atmosphere to the levels we see today. But because the ultraviolet-light signature of ozone features is very strong, you would have a hope of detecting small amounts of ozone. The ultraviolet may therefore be the best wavelength for detecting photosynthetic life on low-oxygen exoplanets."

NASA has a forthcoming observatory called the James Webb Space Telescope that could make similar kinds of measurements in infrared light, with the potential to detect methane and oxygen in exoplanet atmospheres. Webb is currently scheduled to launch in 2021.
-end-


NASA/Goddard Space Flight Center

Related Space Telescope Articles:

Unveiling rogue planets with NASA's Roman Space Telescope
New simulations show that NASA's Nancy Grace Roman Space Telescope will be able to reveal myriad rogue planets - freely floating bodies that drift through our galaxy untethered to a star.
Hubble makes the first observation of a total lunar eclipse by a space telescope
Taking advantage of a total lunar eclipse, astronomers using the NASA/ESA Hubble Space Telescope have detected ozone in Earth's atmosphere.
Stunning space butterfly captured by ESO telescope
Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas -- known as NGC 2899 -- appears to float and flutter across the sky in this new picture from ESO's Very Large Telescope (VLT).
CHEOPS space telescope ready for scientific operation
CHEOPS has reached its next milestone: Following extensive tests in Earth's orbit, some of which the mission team was forced to carry out from home due to the coronavirus crisis, the space telescope has been declared ready for science.
Scientists build a 'Hubble Space Telescope' to study multiple genome sequences
Scientists can now simultaneously compare 1.4 million genetic sequences, helping classify how species are related to each other at far larger scales than previously possible.
James Webb Space Telescope could begin learning about TRAPPIST-1 atmospheres in a year
New research from astronomers at the University of Washington uses the intriguing TRAPPIST-1 planetary system as a kind of laboratory to model not the planets themselves, but how the coming James Webb Space Telescope might detect and study their atmospheres, on the path toward looking for life beyond Earth.
Kepler Space Telescope's first exoplanet candidate confirmed
An international team of astronomers announced the confirmation of the first exoplanet candidate identified by NASA's Kepler Mission.
Space telescope detects water in a number of asteroids
Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time.
The Hubble Space Telescope discovers the most distant star ever observed
An international team, including researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL), participated in the discovery of a star at a distance of nine billion lightyears from Earth.
ASU astronomers to build space telescope to explore nearby stars
A new ASU-led mission will launch a small satellite telescope into space to study the environment in other solar systems around the Galaxy's most common type of star.
More Space Telescope News and Space Telescope Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.