Embryonic heart development: Unprecedented insight from 4D OCT

August 06, 2020

How a valveless embryonic heart tube pumps blood is a long-standing scientific mystery. Thanks to innovations in light-based technology, fresh insights are now available into the biomechanics of mammalian cardiogenesis—and in particular, the pumping dynamics of the mammalian tubular embryonic heart.

4D OCT (3D + time)

Shang Wang of the Stevens Institute of Technology and Irina Larina of the Baylor College of Medicine used cutting-edge 4D optical coherence tomography (OCT) to study the pumping mechanism underlying the developing mammalian heart for the first time. Their report, published in the peer-reviewed open access Journal of Biomedical Optics, demonstrates that 4D OCT imaging of mouse embryonic heart can provide unprecedented information about how the early mammalian heart works.

The study demonstrates the richness of data provided by this approach and its feasibility for investigating the functional relation between blood flow and heart wall dynamics within different regions of the embryonic mammalian heart—a possibility not currently accessible by other methods. The approach can be potentially used to assess cardiac pumping over embryonic development as the heart tube remodels, which could reveal functional changes during early cardiogenesis.

Biomechanics of the tiny mouse heart

The unique imaging scales and dynamic contrasts offered by OCT enable millimeter-level imaging depth with a microscale resolution that is ideal for capturing the entire mouse heart at mid-gestation stages. OCT also provides a clear view of fine cardiac structures as well as blood flow. The high imaging speed of OCT together with post-acquisition synchronization allows reconstructing the fast dynamics of the beating heart.

Amy L. Oldenburg, director of the Optical Coherence Imaging Laboratory at University of North Carolina at Chapel Hill, remarked, "The innovative method offers a new way of studying developmental cardiac biomechanics. Analysis of the 4D OCT images allowed Wang and Larina to relate blood flow, flow resistance, and pressure gradients induced by heart wall movements."

There is much to be learned. Although the mechanism that pumps blood within the embryonic heart tube has traditionally been thought to be wavelike peristaltic contractions, Wang and Larina were able to offer a more detailed assessment using 4D OCT to integrate cardiodynamics and hemodynamics. Their pilot observations suggest that localized heart tube pumping in the ventricles functions through a combination of suction and pushing mechanisms.

Increasing understanding of congenital heart defects

Biomechanical factors are increasingly recognized for their essential roles in stimulating and regulating the heart development. The authors hope that their approach may inspire new ideas and innovative designs in imaging and measurement techniques to assess the embryonic cardiac biomechanics. In particular, the method may provide useful ways to better understand the mechanisms contributing to congenital heart defects, which are abnormal formations of the heart that develop before birth. According to Oldenburg, the results of this study "showcase the utility of these methods for studying biomechanical changes in mutant embryonic hearts that model congenital heart defects." As mutant mouse lines modeling congenital heart defects are widely available, the method may contribute to increased understanding of the earliest development of the most common form of birth defect in humans.

Read the original open access report: "Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart," J. of Biomedical Optics, 25(8), 086001 (2020), doi 10.1117/1.JBO.25.8.086001

SPIE--International Society for Optics and Photonics

Related Blood Flow Articles from Brightsurf:

Brain regions with impaired blood flow have higher tau levels
In Alzheimer's disease, impaired blood flow to brain regions coincides with tau protein buildup.

3D ultrasound enables accurate, noninvasive measurements of blood flow
A 3D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a new study.

Blood flow recovers faster than brain in micro strokes
Work by a Rice neurobiologist shows that increased blood flow to the brain is not an accurate indicator of neuronal recovery after a microscopic stroke.

Exercise improves memory, boosts blood flow to brain
Scientists have collected plenty of evidence linking exercise to brain health, with some research suggesting fitness may even improve memory.

3D VR blood flow to improve cardiovascular care
Biomedical engineers are developing a massive fluid dynamics simulator that can model blood flow through the full human arterial system at subcellular resolution.

MRI shows blood flow differs in men and women
Healthy men and women have different blood flow characteristics in their hearts, according to a new study.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.

Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.

Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.

Read More: Blood Flow News and Blood Flow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.