Training neural circuits early in development improves response, study finds

August 06, 2020

CHAMPAIGN, Ill. -- When it comes to training neural circuits for tissue engineering or biomedical applications, a new study suggests a key parameter: Train them young.

Techniques for training engineered neural circuits usually involve training them after the cells have fully matured. Using light-sensitive neurons derived from mouse stem cells, researchers at the University of Illinois, Urbana-Champaign found that training them throughout early cell development and network formation led to lasting improvements in the connections, responsivity and gene expression of the resulting neural network. They published their results in the journal Scientific Reports.

"It's like an old dog learning new tricks versus a young puppy," said graduate student Gelson Pagan-Diaz, the first author of the study. "When we're training a network, if we stimulate it when it's still like a puppy, we can get a better response to the training than if it were already mature."

Improved neural training has many applications in bioengineering and regenerative medicine. For example, the Illinois team hopes to use trained neural circuits to control the movement and behavior of miniature bio-hybrid machines. The types of improvements yielded by early training could give the machines and circuits more functionality and give the researchers more precise control over those functions.

"As we advance the field of building machines with living cells, being able to stimulate and program neuronal cells and networks with light early in their development could be an important tool in our engineering repository," said study leader Rashid Bashir, a professor of bioengineering and dean of the Grainger College of Engineering at Illinois. "Furthermore, this work could have implications for developmental biology, regenerative medicine and brain research."

To train the neurons, the researchers used timed pulses of light to stimulate the cells. The researchers began the training regimen when the cells were early in their development - clusters of stem cells, called embryoid bodies, primed to become motor neurons. They continued the training as the cells differentiated, becoming fully mature neurons, and further continued it after transferring the cells to plates to connect and form neural circuits.

They then compared the early trained circuits with those cultured first and trained later - the usual method.

The researchers saw a number of differences between the groups, Pagan-Diaz said. In the neurons trained during development, they saw more extensions indicating connections between cells, an increase in neurotransmitter packages sent between cells, and more structured nerve firing, indicating greater network stability. The effects of the early training were long-lasting, whereas cells trained later tended to have transient responses.

"You can think of the neurons being like athletes in training," Pagan-Diaz said. "The light stimulation was like a regular workout for the neurons - they were stronger and more athletic, and did their jobs better."

To determine the underlying basis for these changes, the researchers analyzed the neurons' genetic activity. They saw an increase in gene expression for genes related to network maturity and neural function, indicating that the early training could have permanently altered genetic pathways as the cells developed, Bashir said.

The researchers are continuing to explore what kinds of activities could be enhanced or programmed by early neuron training in the embryoid body phase. Embryoid bodies could be useful building-block components for biological machines, Pagan-Diaz said, and also hold promise for regenerative medicine.

"Previous studies have shown that embryoid bodies with motor neurons implanted into mice that had been injured could improve the regeneration of tissue," Pagan-Diaz said. "If we can improve or enhance the functionality of these embryoid bodies prior to putting them into an injured model, then theoretically we could enhance the recovery beyond what has been seen with injecting them and then stimulating them later."
-end-
The National Science Foundation supported this work through the Emergent Behaviors of Integrated Cellular Systems science and technology center and through the Miniature Brain Machinery Research Traineeship. Research staffer Jenny Drnevich, graduate students Karla Ramos-Cruz and Richard Sam, and University of Illinois, Chicago bioengineering professor Perijat Sengupta were co-authors of the paper.

Editor's notes: To reach Rashid Bashir, email rbashir@illinois.edu. To reach Gelson Pagan-Diaz, email gelsonj.pagan@gmail.com.

The paper "Modulating electrophysiology of motor neural networks via optogenetic stimulation during neurogenesis and synaptogenesis" is available online .

University of Illinois at Urbana-Champaign, News Bureau

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.