Creation of new neurons critical to antidepressant action in mice

August 07, 2003

Blocking the formation of neurons in the hippocampus blocks the behavioral effects of antidepressants in mice, say researchers funded by the National Institutes of Health (NIH). Their finding lends new credence to the proposed role of such neurogenesis in lifting mood. It also helps to explain why antidepressants typically take a few weeks to work, note Rene Hen, Ph.D., Columbia University, and colleagues, who report on their study in the August 8th Science.

"If antidepressants work by stimulating the production of new neurons, there's a built-in delay," explained Hen, a grantee of NIH's National Institute of Mental Health (NIMH) and National Institute on Drug Abuse (NIDA). "Stem cells must divide, differentiate, migrate and establish connections with post-synaptic targets - a process that takes a few weeks."

"This is an important new insight into how antidepressants work," added NIMH director Thomas Insel, M.D. "We have known that antidepressants influence the birth of neurons in the hippocampus. Now it appears that this effect may be important for the clinical response."

Chronic stress, anxiety and depression have been linked to atrophy or loss of hippocampal neurons. A few years ago, Hen's colleague and co-author Ronald Duman, Ph.D., Yale University, reported that some antidepressants promote hippocampal neurogenesis. But to what effect? To begin to demonstrate a causal relationship between these newly generated cells and relief from depression, researchers would have to find a way to prevent their formation in a behaving animal.

The researchers first showed that mice become less anxious - they begin eating sooner in a novel environment - after four weeks of antidepressant treatment, but not after just 5 days of such treatment. Paralleling the delay in onset of antidepressant efficacy in humans, the chronically-treated mice, but not the briefly-treated ones, showed a 60 percent boost in a telltale marker of neurogenesis in a key area of the hippocampus.

To find out if the observed neurogenesis is involved in antidepressants' mechanism-of -action, Hen and colleagues selectively targeted the hippocampus with x-rays to kill proliferating cells. This reduced neurogenesis by 85 percent. Antidepressants had no effect on anxiety and depression-related behaviors in the irradiated mice. For example, fluoxetine failed to improve grooming behavior, as it normally does, in animals whose behavior had deteriorated following chronic unpredictable stress. Evidence suggested that this could not be attributed to other effects of x-rays

Neurons communicate with each other by secreting messenger chemicals, or neurotransmitters, such as serotonin, which cross the synaptic gulf between cells and bind to receptors on neighboring cell membranes. Medications that enhance such binding of serotonin to its receptors (serotonin selective reuptake inhibitors, or SSRIs) are widely prescribed to treat anxiety and depression, suggesting that these receptors play an important role in regulating emotions.

By knocking out the gene that codes for a key subtype of serotonin receptor (5-HT1A), the researchers created a strain of "knockout" mice that as adults show anxiety-related traits, such as a reluctance to begin eating in a novel environment. While unaffected by chronic treatment with the SSRI fluoxetine, the knockout mice became less anxious after chronic treatment with tricyclic antidepressants, which act via another neurotransmitter, norepinephrine, suggesting an independent molecular pathway.

While chronic fluoxetine treatment doubled the number of new hippocampal neurons in normal mice, it had no effect in the knockout mice. The tricyclic imipramine boosted neurogenesis in both types of mice, indicating that the serotonin 1A receptor is required for neurogenesis induced by fluoxetine, but not imipramine. Chronic treatment with a serotonin 1A-selective drug confirmed that activating the serotonin 1A receptor is sufficient to spur cell proliferation.

Although the new findings strengthen the case that neurogenesis contributes to the effects of antidepressants, Hen cautions that ultimate proof may require a "cleaner" method of suppressing this process, such as transgenic techniques that will more precisely target toxins at the hippocampal circuits involved.

"Our results suggest that strategies aimed at stimulating hippocampal neurogenesis could provide novel avenues for the treatment of anxiety and depressive disorders," suggest the researchers.

Also participating in the study were: Luca Santarelli, Michael Saxe, Cornelius Gross, Stephanie Dulawa, Noelia Weisstaub, James Lee, Columbia University; Alexandre Surget, Catherine Belzung, Universite de Tours, France; Fortunato Battaglia, Ottavio Arancio, New York University.
-end-
In addition to NIMH and NIDA, the research was also supported by the National Alliance for Research on Schizophrenia and Depression (NARSAD).

NIMH and NIDA are part of the National Institutes of Health (NIH), the Federal Government's primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

NIH/National Institute of Mental Health

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.