Penn researchers discover how key protein stops inflammation

August 07, 2007

PHILADELPHIA - Researchers at the University of Pennsylvania School of Medicine recently identified how a regulatory protein called Bcl-3 helps to control the body's inflammation response to infection by interfering a critical biochemical process called ubiquitination. While previous studies suggested Bcl-3 plays a role in immunity, this is the first report that Bcl-3 regulates inflammation by blocking ubiquitination.

Their findings, published in Science, open new avenues of exploration for developing therapies to treat infectious or inflammatory diseases, such as sepsis, diabetes, and rheumatoid arthritis.

"The novelty of our study is the discovery that Bcl-3 acting on gene expression has a profound effect on inflammation," says Ruaidhri Carmody, PhD, Senior Research Investigator in the Department of Pathology and Laboratory Medicine and first author of the Science paper. "By mimicking Bcl-3 activity, we may be able to create an artificial way to block the inflammatory response."

In the laboratory of senior author Youhai Chen, PhD, Associate Professor of Pathology and Laboratory Medicine, Carmody and others searched for clues as to how Bcl-3 controls inflammation by examining how Bcl-3-deficient mouse cells respond to infection. Their studies revealed that Bcl-3 interacts with p50, a protein that inhibits gene transcription by binding to DNA.

"p50 turns off the DNA region coding for inflammation, halting the response to infection," explains Chen. Without Bcl-3, Chen says p50 cannot stop the inflammation response, but instead will become degraded very fast, through ubiquintination.

Ubiquitination is an intracellular system of checks and balances, where cellular proteins are flagged for disposal. During exposure to infection, Bcl-3 appears to overrule the p50 ubiquitination, stabilizing the presence of p50 on DNA and halting inflammation.

"Our study identifies another layer of information that controls the inflammatory response," says Chen. "Bcl-3 appears to take in information from the body and, in response to infection, interferes with p50 degradation to decrease inflammatory response."

"Inflammation is natural," says Chen. "If we didn't respond to infectious agents, bacteria would kill us. However, the inflammatory response must be controlled or we could also die. Bcl-3 helps regulate inflammation."

"By using what we now know about Bcl-3 regulatory function, we hope to create new ways to control inflammation for therapeutic purposes with selective anti-inflammatory agents," says Carmody.

Although drugs to suppress inflammation currently exist, Chen and Carmody say they cause many undesirable side effects in patients with inflammatory diseases.

"Current drug treatments target inflammation signaling pathways. When you inhibit entire pathways, you can produce negative side effects," said Carmody. "Since Bcl-3 acts on specific genes, we should be able to target a subset of dangerous regulatory genes without disrupting other important immune responses." Such drugs could benefit patients with chronic inflammation and transplant recipients as well as those suffering with inflammatory diseases.

In the future, the scientists aim to determine the components of the cell responsible for flagging p50 for destruction and instructing Bcl-3 to perform its vital function.
-end-
Penn co-authors are Qingguo Ruan, Scott Palmer, and Brendan Hilliard. This research was funded by the National Institute of Allergy and Infectious Disease. This release can be viewed at www.pennhealth.com/news.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals -- its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation's "Honor Roll" hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center -- a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

University of Pennsylvania School of Medicine

Related Inflammation Articles from Brightsurf:

3D printed stents that treat inflammation
POSTECH Professor Dong-Woo Cho's research team develops bioink-loaded esophageal stents for treating radiation esophagitis.

New cause of inflammation in people with HIV identified
A new study led by researchers at Boston Medical Center examined what factors could be contributing to this inflammation, and they identified the inability to control HIV RNA production from existing HIV DNA as a potential key driver of inflammation.

Maltreatment tied to higher inflammation in girls
New research by a University of Georgia scientist reveals that girls who are maltreated show higher levels of inflammation at an early age than boys who are maltreated or children who have not experienced abuse.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Inflammation in the brain linked to several forms of dementia
Inflammation in the brain may be more widely implicated in dementias than was previously thought, suggests new research from the University of Cambridge.

Social isolation could cause physical inflammation
Social isolation could be associated with increased inflammation in the body new research from the University of Surrey and Brunel University London has found.

Hydrogels control inflammation to help healing
Researchers test a sampling of synthetic, biocompatible hydrogels to see how tuning them influences the body's inflammatory response.

Why beta-blockers cause skin inflammation
Beta-blockers are often used to treat high blood pressure and other cardiovascular diseases.

The 'inflammation' of opioid use
New research correlates inflammation in the brain and gut to negative emotional state during opioid withdrawal.

Using a common anticonvulsant to counteract inflammation
The interaction between a chromosomal protein called HMGB1 and a cellular receptor called RAGE is known to trigger inflammation.

Read More: Inflammation News and Inflammation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.