First hundred thousand years of our universe

August 07, 2013

Mystery fans know that the best way to solve a mystery is to revisit the scene where it began and look for clues. To understand the mysteries of our universe, scientists are trying to go back as far they can to the Big Bang. A new analysis of cosmic microwave background (CMB) radiation data by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) has taken the furthest look back through time yet - 100 years to 300,000 years after the Big Bang - and provided tantalizing new hints of clues as to what might have happened.

"We found that the standard picture of an early universe, in which radiation domination was followed by matter domination, holds to the level we can test it with the new data, but there are hints that radiation didn't give way to matter exactly as expected," says Eric Linder, a theoretical physicist with Berkeley Lab's Physics Division and member of the Supernova Cosmology Project. "There appears to be an excess dash of radiation that is not due to CMB photons."

Our knowledge of the Big Bang and the early formation of the universe stems almost entirely from measurements of the CMB, primordial photons set free when the universe cooled enough for particles of radiation and particles of matter to separate. These measurements reveal the CMB's influence on the growth and development of the large-scale structure we see in the universe today.

Linder, working with Alireza Hojjati and Johan Samsing, who were then visiting scientists at Berkeley Lab, analyzed the latest satellite data from the European Space Agency's Planck mission and NASA's Wilkinson Microwave Anisotropy Probe (WMAP), which pushed CMB measurements to higher resolution, lower noise, and more sky coverage than ever before.

"With the Planck and WMAP data we're really pushing back the frontier and looking further back in the history of the universe, to regions of high energy physics we previously could not access," Linder says. "While our analysis shows the CMB photon relic afterglow of the Big Bang being followed mainly by dark matter as expected, there was also a deviation from the standard that hints at relativistic particles beyond CMB light."

Linder says the prime suspects behind these relativistic particles are "wild" versions of neutrinos, the phantomlike subatomic particles that are the second most populous residents (after photons) of today's universe. The term "wild" is used to distinguish these primordial neutrinos from those expected within particle physics and being observed today. Another suspect is dark energy, the anti-gravitational force that accelerates our universe's expansion. Again, however, this would be from the dark energy we observe today.

"Early dark energy is a class of explanations for the origin of cosmic acceleration that arises in some high energy physics models," Linder says. "While conventional dark energy, such as the cosmological constant, are diluted to one part in a billion of total energy density around the time of the CMB's last scattering, early dark energy theories can have 1-to-10 million times more energy density."

Linder says early dark energy could have been the driver that seven billion years later caused the present cosmic acceleration. Its actual discovery would not only provide new insight into the origin of cosmic acceleration, but perhaps also provide new evidence for string theory and other concepts in high energy physics.

"New experiments for measuring CMB polarization that are already underway, such as the POLARBEAR and SPTpol telescopes, will enable us to further explore primeval physics, Linder says.
-end-
Linder, Hojjati and Samsing are the authors of a paper describing these results in the journal Physical Review Letters titled "New Constraints on the Early Expansion History of the Universe." Hojjati is now with the Institute for the Early Universe in South Korea, and Samsing is with the DARK Cosmology Centre in Denmark.

This research was primarily supported by the U.S. Department of Energy's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Dark Energy Articles from Brightsurf:

UH Mānoa researchers predict location of novel candidate for mysterious dark energy
UH researchers explain what may be the cause of the universe's accelerating growth.

New test of dark energy and expansion from cosmic structures
A new paper has shown how large structures in the distribution of galaxies in the Universe provide the most precise tests of dark energy and cosmic expansion yet.

IKBFU astrophysicists have developed a theory explaining the 'Dark Energy' phenomenon
The article refers to the issue of the 'Dark Enegry' and an assumption is made that the Universe has borders.

Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.

Lab-based dark energy experiment narrows search options for elusive force
An experiment to test a popular theory of dark energy has found no evidence of new forces, placing strong constraints on related theories.

A survey machine and a data trove: Dark Energy Survey's rich legacy
On the night of Jan. 9, 2019, the V. M.

String theory: Is dark energy even allowed?
In string theory, a paradigm shift could be imminent. In June, a team of string theorists from Harvard and Caltech published a conjecture which sounded revolutionary: String theory is said to be fundamentally incompatible with our current understanding of 'dark energy'.

Dark energy survey publicly releases first three years of data
At a special session held during the American Astronomical Society meeting in Washington, D.C., scientists on the Dark Energy Survey (DES) announced today the public release of their first three years of data.

Star mergers: A new test of gravity, dark energy theories
Observations and measurements of a neutron star merger have largely ruled out some theories relating to gravity and dark energy, and challenged a large class of theories.

Doing without dark energy
Three mathematicians have a different explanation for the accelerating expansion of the universe that does without theories of 'dark energy.' Einstein's original equations for General Relativity actually predict cosmic acceleration due to an 'instability,' they argue in paper published recently in Proceedings of the Royal Society A.

Read More: Dark Energy News and Dark Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.