Climate warming may have unexpected impact on invasive species, Dartmouth study finds

August 07, 2014

Rising temperatures may be seen as universally beneficial for non-native species expanding northward, but a Dartmouth College study suggests a warmer world may help some invaders but hurt others depending on how they and native enemies and competitors respond.

The study, which sheds light on the uncertain relationship between climate change and invasive species, appears in the journal Ecology. A PDF of the study is available on request.

Climate change and invasive species rank among the largest predicted threats to global ecosystems over the next century, but they are typically treated independently. To date, research focusing on the connection between these two threats has primarily focused on the idea that species from lower latitudes, which typically experience warmer temperatures than those in higher latitude ecosystems, will perform better at higher latitudes as temperatures warm. The Dartmouth study focuses instead on how a trait common among certain invasive species -- benefiting from "enemy release" -- can be influenced by changes in temperatures. The ''enemy release'' hypothesis holds that certain invading species succeed because they escape from their natural enemies -- pathogens, parasites, herbivores and predators -- in their native habitat. The Dartmouth study's approach takes into account that invading species are attempting to establish in locations where other species already exist, and the interactions with these existing species are important to consider.

The researchers conducted a six-week experiment manipulating the presence of sunfish and water temperature using two non-native and native crustacean zooplankton. They found that increases in water temperature favored the non-native crustacean due its faster growth rate at higher temperatures, as well as the fact that sunfish predators of both crustaceans eat more at higher temperatures. The sunfish's increased appetite disproportionally benefits the non-native crustacean because it has more effective defenses against fish predation -- hence its "release" from this particular enemy -- than the native crustacean.

The results suggest that warming temperatures can affect the strength of "enemy release," which will alter the success of invading species. "But the direction of this effect depends on the physiology of the species present. As such, warming could increase or decrease the strength of 'enemy release' depending on the organisms that exist in a given location," says the study's lead author Samuel Fey, a visiting scholar at Dartmouth and a postdoctoral fellow at Yale University who recently received a Ph.D. from Dartmouth's Ecology and Evolutionary Biology program.
-end-
Samuel Fey is available to comment at samuel.b.fey@dartmouth.edu

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Dartmouth College

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.