Microtubule-based strategies for promoting nerve regeneration after injury

August 07, 2014

After injury, damaged axons have the capacity to regenerate, but the regenerative capacity of the axon, particularly axons of the central nervous system, is quite limited. This is because the damaged axons tend to retract, because they encounter obstacles such as scar tissue and inhibitory molecules, and because their growth rates simply do not match those of a juvenile axon. Prof. Peter W. Baas from Drexel University, USA focus on microtubules as among the most important factors in encouraging injured adult axons to regenerate. Microtubules are hollow polymeric filaments composed of tubulin subunits that provide structural support for the axon. In addition to their structural role, microtubules are an important substrate for many of the molecular motor proteins responsible for intracellular transport. Microtubules are intrinsically polar structures, with their "plus" ends favored for assembly over their "minus" ends. Molecular motor proteins interact with cargo such as membranous organelles that are transported in conjunction with the motor. In the axon, the microtubules are aligned into a paraxial array with the plus ends of the microtubules directed away from the cell body, thus establishing the directionality with which different motors convey their cargo. Microtubules gather together and funnel into the hillock region of the axon and then splay apart again at sites of branch formation and within the growth cone at the tip of the elongating axon. Microtubules are relevant to axonal growth and regeneration for reasons related to all of these factors. Additionally, it appears that the dynamic properties of microtubules are critically important especially in the distal tip of the axon, for the capacity of the axon to form a viable growth cone, to turn properly in response to external cues, and to grow with the vitality typical of the developing nervous system. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 13, 2014).
-end-
Article: " Beyond taxol: microtubule-based strategies for promoting nerve regeneration after injury " by Peter W. Baas (Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, USA)

Baas PW. Beyond taxol: microtubule-based strategies for promoting nerve regeneration after injury. Neural Regen Res. 2014;9(13):1265-1266.

Contact: Meng Zhao
eic@nrren.org
86-138-049-98773
Neural Regeneration Research
http://www.nrronline.org/

Neural Regeneration Research

Related Microtubules Articles from Brightsurf:

Unbalanced microtubule networks launch establishment of neuronal polarity
Prof. MENG Wenxiang's group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences recently reported a new mechanism by which microtubule networks instruct neuronal polarity.

Biologists unravel tangled mystery of plant cell growth
When cells don't divide into proper copies of themselves, living things fail to grow as they should.

Cellular train track deformities shed light on neurological disease
A new technique allows researchers to test how the deformation of tiny train track-like cell proteins affects their function.

Parkinson's disease protein structure solved inside cells using novel technique
The top contributor to familial Parkinson's disease is mutations in leucine-rich repeat kinase 2 (LRRK2), whose large and difficult structure has finally been solved, paving the way for targeted therapies.

POSTECH developed self-assembled artificial microtubule like LEGO building blocks
Professor Kimoon Kim and his research team identified a new hierarchical self-assembly mechanism

How cells assemble their skeleton
Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport.

Researchers unlock secrets of cell division, define role for protein elevated in cancer
Researchers at Princeton University have successfully recreated a key process involved in cell division in a test tube, uncovering the vital role played by a protein that is elevated in over 25% of all cancers.

Computer model described the dynamic instability of microtubules
Researchers of Sechenov University together with their colleagues from several Russian institutes studied the dynamics of microtubules that form the basis of the cytoskeleton and take part in the transfer of particles within a cell and its division.

A simple way to control swarming molecular machines
The swarming behavior of about 100 million molecular machines can be controlled by applying simple mechanical stimuli such as extension and contraction.

Cancer tumours form surprising connections with healthy brain cells
Anti-epileptic medicine can curb the dangerous communication and possibly be part of future treatment.

Read More: Microtubules News and Microtubules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.