Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

August 07, 2014

Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. Huimin Liang and co-workers from Second Affliated Hospital of Zhengzhou University, China speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In a study reported on the Neural Regeneration Research (Vol. 9, No. 13, 2014), PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.
-end-
Article: " Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)," by Huimin Liang1, 2, Yaozhou Zhang3, Xiaoyan Shi4, Tianxiang Wei1, Jiyu Lou1 (1 Second Affliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; 2 Huaihe Hospital of Henan University, Kaifeng, Henan Province, China; 3 Department of Biotechnology, Xinyang Agricultural College, Xinyang, Henan Province, China; 4 Pharmaceutical College of Henan University, Zhengzhou, Henan Province, China)

Liang HM, Zhang YZ, Shi XY, Wei TX, Lou JY. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neural Regen Res. 2014;9(13):1297-1302.

Contact: Meng Zhao
eic@nrren.org
86-138-049-98773
Neural Regeneration Research
http://www.nrronline.org/

Neural Regeneration Research

Related Apoptosis Articles from Brightsurf:

Thymoquinone induces apoptosis & DNA damage in 5-Fluorouracil-resistant colorectal cancer
Volume 11, Issue 31 from @Oncotarget reported that TQ decreased the expression levels of colorectal stem cell markers CD44 and Epithelial Cell Adhesion Molecule Ep CAM and proliferation marker Ki67 in colonospheres derived from both cell lines and reduced cellular migration and invasion.

Oncotarget: Th1 cytokines potentiate apoptosis of breast cancer cells and suppress tumor growth
Volume 11, Issue 30 of Oncotarget reported that previously, the authors showed that anti-estrogen drugs combined with a dendritic cell-based anti-HER-2 vaccine known to induce strong Th1-polarized immunity dramatically improved clinical response rates in patients with HER-2pos/ERpos early breast cancer.

Opening an autophagy window as the apoptosis door starts to close
Tokyo Medical and Dental University (TMDU) researchers have successfully attached the cancer cell-targeting antibody Trastuzumab to a previously reported supermolecule that induces autophagic cell death.

Stop Livin to make lymphoma cells stop living
Researchers at the University of Tsukuba have shown that the protein Livin, an inhibitor of apoptosis or programmed cell death, mediates resistance to immunotherapy in some lymphoma variants.

Protein causes mutations that lead to breast cancer cell aggression
In her previous research, University of Alberta biochemist Ing Swie Goping identified that the protein, BCL-2 interacting killer (BIK), was associated with relapses in breast cancer patients.

Shigella prevents infected cells from sacrificing themselves for the greater good
Researchers from Tokyo Medical and Dental University (TMDU) investigated how Shigella survive and multiply to cause severe inflammatory colitis.

Bacteria can 'outsmart' programmed cell death
To be able to multiply, bacteria that cause diarrhoea block mediators of programmed cell death, a new study in 'Nature Microbiology' shows.

High expression of apoptosis protein (Api-5) in chemoresistant triple-negative breast cancers: an innovative target
78 TNBC biopsies from patients with different responses to chemotherapy were analysed for API-5 expression before any treatment.

High expression of apoptosis protein (Api-5) in chemoresistant triple-negative breast cancers
78 TNBC biopsies from patients with different responses to chemotherapy were analysed for API-5 expression before any treatment.

Researchers describe a mechanism inducing self-killing of cancer cells
A KAIST research team has developed helical polypeptide potassium ionophores that lead to the onset of programmed cell death.

Read More: Apoptosis News and Apoptosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.