Regulations needed to identify potentially invasive biofuel crops

August 07, 2014

URBANA, Ill. - If the hottest new plant grown as a biofuel crop is approved based solely on its greenhouse gas emission profile, its potential as the next invasive species may not be discovered until it's too late. In response to this need to prevent such invasions, researchers at the University of Illinois have developed both a set of regulatory definitions and provisions and a list of 49 low-risk biofuel plants from which growers can choose.

Lauren Quinn, an invasive plant ecologist at U of I's Energy Biosciences Institute, recognized that most of the news about invasive biofuel crops was negative and offered few low-risk alternatives to producers. She and her colleagues set out to create a list of low-risk biofuel crops that can be safely grown for conversion to ethanol but realized in the process that regulations were needed to instill checks and balances in the system.

"There are not a lot of existing regulations that would prevent the planting of potentially invasive species at the state or federal levels. For example, there are currently only four states (Florida, Mississippi, Oregon, and Maryland) that have any laws relating to how bioenergy crops can be grown and that include any language about invasive species--and, for the most part, when those words do appear, they are either not defined or poorly defined," said Quinn.

In approving new biofuel products, Quinn said that the EPA doesn't formally consider invasiveness at all - just greenhouse gas emissions related to their production. "Last summer, the EPA approved two known invaders, Arundo donax (giant reed) and Pennisetum purpurem (napier grass), despite public criticism," added U of I professor of agricultural law A. Bryan Endres, who co-authored the research to define legislative language for potentially invasive bioenergy feedstocks.

Part of the problem is that there is no clear scientific definition of what it means to be invasive. The team of researchers used fundamental biological, ecological, and management principles to develop definitions for terminology commonly used to describe invasive species.

"Our definition of invasive is 'a population exhibiting a net negative impact or harm to the target ecosystem,' for example," Quinn said. "We want to establish guidelines that will be simple for regulators and informed by the ecological literature and our own knowledge. We also need to recognize that some native plants can become weedy or invasive. It's complicated and requires some understanding of the biology of these plants."

Quinn said that ideally the definitions and suggested regulations could become part of a revised Renewable Fuels Standard administered by EPA, which would require Congress to make the changes. The proposed regulations could also be adopted at the state level.

"Some of the biofeedstocks currently being examined by the EPA for approval, like pennycress, have a high risk for invasion," Quinn said. "Others have vague names such as jatropha with no species name, which is problematic. For example, there are three main Miscanthus species but only sterile hybrid Miscanthus × giganteus types are considered low risk. However, the EPA has approved "Miscanthus" as a feedstock without specifying a species or genotype" Quinn said. "That's fine for the low-risk sterile types but could mean higher-risk fertile types could be approved without additional oversight."

According to Quinn, the white list, which includes 49 low-risk feedstock plants, will serve to clear up the confusion about plant names. The list was developed using an existing weed risk assessment protocol, which includes 49 questions that must be asked about a particular species based on its biology, ecology, and its history of being invasive in other parts of the world.

"Those questions are difficult to answer for new taxa, including plants that haven't been around long or have just recently been developed by breeders," Quinn said. "This will be the first time that they are out in the environment so we don't know what their potential for invasiveness is. But the white list offers plenty of choices of plants that are already commercially available, and the feedstocks on the list have a number of different industrial uses."

Quinn stressed that the native plants that are included in the white list are only recommended as the native genotypes grown in their native region, because although a plant may be native to a part of the United States, it could be considered invasive if grown in a different region.

"For example, Panicum virgatum is the variety of switchgrass that is low risk everywhere except for the three coastal states of Washington, Oregon, and California, but future genotypes that may be bred with more invasive characteristics, such as rapid growth or prolific seed production, may have higher risk."

The researchers believe that the white list provides producers with clearly identified low-invasion risk options and may reduce conflicts between objectives for increasing renewable fuel production and reducing unintended impacts and costs resulting from the propagation of invasive plants.
-end-
"Resolving regulatory uncertainty: legislative language for potentially invasive bioenergy feedstocks" was published in an issue of GCB Bioenergy. Co-authors include Elise Scott and James McCubbins from the Energy Biosciences Institute, A. Bryan Endres and Thomas Voigt from the University of Illinois, and Jacob Barney from Virginia Tech.

"Bioenergy feedstocks at low risk for invasion in the U.S.: A 'white list' approach" was published in Bioenergy Research. Co-authors include Aviva Glaser from the National Wildlife Federation, Doria Gordon from the Nature Conservancy, and Deah Lieurance and Luke Flory from the University of Florida.

Funding for both research projects was provided in part by the Energy Biosciences Institute at the University of Illinois.

University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Invasive Species Articles from Brightsurf:

The invasive species that Europe needs to erradicate most urgently are identified
An international research team analyzed the risk impact and the effectiveness of possible erradication strategies for invasive species already in the region as well as those that have yet to arrive

Crayfish 'trapping' fails to control invasive species
Despite being championed by a host of celebrity chefs, crayfish 'trapping' is not helping to control invasive American signal crayfish, according to new research by UCL and King's College London.

Climate change is impacting the spread of invasive animal species
What factors influence the spread of invasive animal species in our oceans?

Invasive alien species may soon cause dramatic global biodiversity loss
An increase of 20 to 30 per cent of invasive non-native (alien) species would lead to dramatic future biodiversity loss worldwide.

Protected areas worldwide at risk of invasive species
Protected areas across the globe are effectively keeping invasive animals at bay, but the large majority of them are at risk of invasions, finds a involving UCL and led by the Chinese Academy of Science, in a study published in Nature Communications.

Charismatic invasive species have an easier time settling into new habitats
An international study, in which the University of Cordoba participated, assessed the influence of charisma in the handling of invasive species and concluded that the perception people have of them can hinder our control over these species and condition their spread

Invasive species with charisma have it easier
It's the outside that counts: Their charisma has an impact on the introduction and image of alien species and can even hinder their control.

Invasive species that threaten biodiversity on the Antarctic Peninsula are identified
Mediterranean mussels, seaweed and some species of land plants and invertebrates are among the 13 species that are most likely to damage the ecosystems on the Antarctic Peninsula.

Research networks can help BRICS countries combat invasive species
BRICS countries need more networks of researchers dedicated to invasion science if they wish to curb the spread of invasive species within and outside of their borders.

Look out, invasive species: The robots are coming
Researchers published the first experiments to gauge whether biomimetic robotic fish can induce fear-related changes in mosquitofish, aiming to discover whether the highly invasive species might be controlled without toxicants or trapping methods harmful to wildlife.

Read More: Invasive Species News and Invasive Species Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.