Ocean's most oxygen-deprived zones to shrink under climate change

August 07, 2014

As the complex story of climate change unfolds, many of the endings are grim. But there are exceptions. Predictions that the lowest-oxygen environments in the ocean would get worse may not come to pass. Instead, University of Washington research shows climate change, as it weakens the trade winds, could shrink the size of these extreme low-oxygen waters.

"The tropics should actually get better oxygenated as the climate warms up," said Curtis Deutsch, a UW associate professor of oceanography. He is lead author of the study published Aug. 8 in Science.

Warmer water contains less gas, so climate change is expected to reduce oxygen levels worldwide. Observations show this is already taking place in many places. Declines during the past 20 years in the tropical low-oxygen zones, the lowest-oxygen waters on the planet, had led to a 2008 study proposing that these zones would also get worse over time.

Tropical regions are usually associated with an abundance of life, but they have some of the most inhospitable places for ocean dwellers. The oxygen minimum zones off Mexico and Peru have oxygen levels already too low to support most animals (so, unlike in other low-oxygen zones, here there's no risk of killing fish).

But when those levels drop even further, a particular group of bacteria, which can use nitrogen instead of oxygen as a source of energy, thrive. Nitrogen is an essential and very scarce nutrient for marine plants. When oxygen levels get low enough for that particular group of bacteria to take over, significant amounts of the ocean's fertilizer get deep-sixed to the bottom of the tropical ocean.

The new paper shows that water flowing into the tropics is indeed likely to get lower in oxygen, decreasing the initial oxygen supply. But demand will also shift under climate change. Specifically, as the trade winds weaken, the whole sequence of events that feeds this bacterial food chain will slow down, and the low-oxygen zone will shrink.

"If we want to understand how biological and chemical aspects of the ocean will change in the future, we really have to pay a lot of attention to what happens with the winds," Deutsch said. "The winds can lead to conclusions that are exactly the opposite of what you'd expect."

Trade winds from the west cause deep water to percolate up along western coasts, bringing nutrients up from the deep sea. These nutrients feed marine plants, which feed marine animals, which decompose to feed bacteria that use up the remaining oxygen. As trade winds weaken, less nutrient-rich water percolates up from the deep. Fewer plants grow at the surface. Finally, fewer oxygen-gobbling bacteria can survive.

Deutsch is a climate modeler who studies tropical ocean circulation. He learned of sediment cores, collected off Mexico by co-authors William Berelson at the University of Southern California and Alexander van Geen at Columbia University, that showed a puzzling longer-term trend. The authors worked together to interpret the samples. Results show that for most of the time since 1850 the population of these nitrogen-eating bacteria has been going down, coincident with warming oceans and weakening trade winds. This implies that the local oxygen levels, for which few direct measurements exist, have been rising.

"I find it an interesting question for understanding the way the ocean functions on climatic or geologic timescales," Deutsch said.

Most climate models predict that trade winds will continue to weaken in the future, shrinking the oxygen-minimum zones in the Pacific Ocean off the coasts of Mexico, Chile and Peru, and in the Indian Ocean off western Australia.

Decreasing oxygen in the wider ocean is still a major concern, Deutsch said, as are overfishing, ocean acidification and warming water temperatures. "This study shows that what happens to the winds, which is sometimes overlooked, is really important for predicting how the oceans will respond to climate change," Deutsch said.
-end-
The research was funded by the National Science Foundation, the Gordon and Betty Moore Foundation, the U.S. Geological Survey and the Lamont-Doherty Earth Observatory. Other co-authors are Tom Weber, a research scientist at the UW; Robert Thunell at the University of South Carolina; Caitlin Terms at the University of Southern California; James McManus at the University of Akron; John Crusius at the U.S. Geological Survey; Taka Ito at the Georgia Institute of Technology; Timothy Baumgartner and Vicente Ferreira at Mexico's Autonomous University of Baja California; and Jacob Mey at the City University of New York.

For more information, contact Deutsch at 206-543-5189 or cdeutsch@uw.edu.

University of Washington

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.