Nav: Home

Pouring fire on fuels at the nanoscale

August 07, 2015

There are no magic bullets for global energy needs. But fuel cells in which electrical energy is harnessed directly from live, self-sustaining chemical reactions promise cheaper alternatives to fossil fuels.

To facilitate faster energy conversion in these cells, scientists disperse nanoparticles made from special metals called 'noble' metals, for example gold, silver and platinum along the surface of an electrode. These metals are not as chemically responsive as other metals at the macroscale but their atoms become more responsive at the nanoscale. Nanoparticles made from these metals act as a catalyst, enhancing the rate of the necessary chemical reaction that liberates electrons from the fuel. While the nanoparticles are being sputtered onto the electrode they squash together like putty, forming larger clusters. This compacting tendency, called sintering, reduces the overall surface area available to molecules of the fuel to interact with the catalytic nanoparticles, thus preventing them from realizing their full potential in these fuel cells.

Research by the Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), in collaboration with the SLAC National Laboratory in the USA and the Austrian Centre for Electron Microscopy and Nanoanalysis, has developed a way to prevent noble metal nanoparticles from compacting, by encapsulating them individually inside a porous shell made of a metal oxide. The OIST researchers published their findings in Nanoscale. Their work has immediate applications in the field of nano-catalysis for the manufacturing of more efficient fuel cells.

The OIST researchers designed a novel system. They encapsulated Palladium nanoparticles in a shell of Magnesium oxide. Then they dispersed this core-shell combination on an electrode and measured the immersed electrode's abilities in improving the rate of the electrochemical reaction that occurs in methanol fuel cells. They demonstrated that encapsulated Palladium nanoparticles give a significantly superior performance than bare Palladium nanoparticles.

The OIST researchers had previously realized that Magnesium oxide nanoparticles could form porous shells around noble metal nanoparticles while studying Magnesium and Palladium nanoparticles separately. The porosity of this added armor ensures it does not screen molecules of the fuel from reaching the encapsulated Palladium. Electron microscopy images confirmed that the Magnesium oxide shell simply acts as a spacer between the Palladium cores as they try to stick to each other, letting each to realize its full reactive potential.

The advanced nanoparticle deposition system at OIST allowed the researchers to fine tune the experimental parameters and vary the thickness of the encapsulating shell as well as the number of Palladium nanoparticles in the core with relative ease. Tuning sizes and structures of nanoparticles alters their physical and chemical properties for different applications.

"More core-shell combinations can be tried using our technique, with metals cheaper than Palladium for instance, like Nickel or Iron. Our results show enough promise to continue in this new direction," said Vidyadhar Singh, the paper's first author, and postdoctoral fellow under the supervision of Prof. Mukhles Sowwan, the director of OIST's Nanoparticles by Design Unit, who was also a corresponding author of the paper.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.