Nav: Home

From greenhouse gas to 3-D surface-microporous graphene

August 07, 2017

Tiny dents in the surface of graphene greatly enhances its potential as a supercapacitor. Even better, it can be made from carbon dioxide.

A material scientist at Michigan Technological University invented a novel approach to take carbon dioxide and turn it into 3-D graphene with micropores across its surface. The process is the focus of a new study published in the American Chemical Society's Applied Materials & Interfaces.

The conversion of carbon dioxide to useful materials usually requires high energy input due to its ultrahigh stability. However, materials science professor Yun Hang Hu and his research team created a heat-releasing reaction between carbon dioxide and sodium to synthesize 3-D surface-microporous graphene.

"3-D surface-microporous graphene is a brand-new material," Hu says, explaining the material's surface is pockmarked with micropores and folds into larger mesopores, which both increase the surface area available for adsorption of electrolyte ions. "It would be an excellent electrode material for energy storage devices."

Holey Supercapacitors

Basically, a supercapacitor material needs to store -- and release -- a charge. The limiting factor is how quickly ions can move through the material.

The supercapacitive properties of the unique structure of 3-D surface-microporous graphene make it suitable for elevators, buses, cranes and any application that requires a rapid charge/discharge cycle. Supercapacitors are an important type of energy storage device and have been widely used for regenerative braking systems in hybrid vehicles.

Current commercialized supercapacitors employ activated carbon using swaths of micropores to provide efficient charge accumulation. However, electrolyte ions have difficulty diffusing into or through activated carbon's deep micropores, increasing the charging time.

"The new 3-D surface-microporous graphene solves this," Hu says. "The interconnected mesopores are channels that can act as an electrolyte reservoir and the surface-micropores adsorb electrolyte ions without needing to pull the ions deep inside the micropore."

The mesopore is like a harbor and the electrolyte ions are ships that can dock in the micropores. The ions don't have to travel a great distance between sailing and docking, which greatly improves charge/discharge cycles they can steer through. As a result, the material exhibited an ultrahigh areal capacitance of 1.28 F/cm2, which is considered an excellent rate capability as well as superb cycling stability for supercapacitors.

From Thin Air

To synthesize the material from carbon dioxide, Hu's team added carbon dioxide to sodium, followed by increasing temperature to 520 degrees Celsius. The reaction can release heat instead of require energy input.

During the process, carbon dioxide not only forms 3-D graphene sheets, but also digs the micropores. The tiny dents are only 0.54 nanometers deep in the surface layers of graphene.
-end-
Hu's work is funded by the National Science Foundation (NSF) and detailed in the ACS Applied Materials & Interfaces article "An Ideal Electrode Material, 3-D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance," authored by Hu and his graduate student Liang Chang as well as his collaborator Dario Stacchiola from the Center for Functional Nanomaterials at Brookhaven National Laboratory.

Michigan Technological University

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...