Study of protein cages strengthens Bristol's position at forefront of synthetic biology

August 07, 2017

A multidisciplinary team of mathematicians, theoretical physicists, chemists and biochemists from the University of Bristol came together to study the self-assembly of protein building into protein cages with possible applications in nanotechnology and synthetic biology.

The paper: Beyond icosahedral symmetry in packings of proteins in spherical shells is published this week in the Proceedings of the National Academy of Sciences of the USA.

The research is led by Professors Tanniemola Liverpool and Noah Linden from the School of Mathematics and Professor Dek Woolfson from the Schools of Chemistry and Biochemistry, and builds on previous research, performed in Professor Woolfson's laboratory on synthetic protein cages. The team's findings shed light on understanding the regularity of the self-assembled cages and can potentially lead to new approaches in protein design for self-assembly and can drive new experimental methodologies.

Commenting on the research, lead author, Dr Majid Mosayebi, a Postdoctoral Research Associate in Theoretical Biophysics in the School of Mathematics, said:

"The design and construction of man-made structures at microscopic scales is one of the key goals of modern nanotechnology. With nature as inspiration, synthetic biological building blocks have recently been designed that self-assemble into quasi-spherical shells or cages.

"While many natural protein building blocks self-assemble into highly symmetric ordered shells (e.g. viruses), our study shows that surprisingly even a small amount of (unavoidable) flexibility in the synthetic protein building blocks leads to stable disordered configurations.

"Our work focuses on how robust the symmetry of the cage is given the flexibility of the protein building blocks. Our work sheds light on the self-assembly mechanisms in these cages, which can have widespread applications in material science and synthetic biology, including fabrication of metamaterials, targeted drug delivery, vaccine design and nanoreactors."

The paper describes theoretical work and numerical simulations by researchers from the Bristol BioDesign Institute.
Bristol BioDesign Institute (BBI) brings together BrisSynBio, a UK Synthetic Biology Research Centre, and the SynBio Centre for Doctoral Training, and is at the forefront of the global effort to engineer biological systems more predictably and reliably (synthetic biology). BBI brings together postgraduate and postdoctoral researchers, academics, policy makers and industry, and engages the public through emerging solutions to global challenges.

University of Bristol

Related Nanotechnology Articles from Brightsurf:

Hiring antibodies as nanotechnology builders
Researchers at the University of Rome Tor Vergata recruit antibodies as molecular builders to assemble nanoscale structures made of synthetic DNA.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Want in on nanotechnology? Capitalize on collaborative environments
Patent law experts demonstrate that private-public partnerships lead to promising innovation output measured in patents.

Nanotechnology makes it possible for mice to see in infrared
Mice with vision enhanced by nanotechnology were able to see infrared light as well as visible light, reports a study published Feb.

Healing kidneys with nanotechnology
In new research appearing in the journal Nature Biomedical Engineering, Hao Yan and his colleagues at the University of Wisconsin-Madison and in China describe a new method for treating and preventing Acute Kidney Injury.

A treasure trove for nanotechnology experts
A team from EPFL and NCCR Marvel has identified more than 1,000 materials with a particularly interesting 2-D structure.

Nanotechnology could redefine oral surgery
A trip to the dentist or orthodontist usually instills a sense of dread in most patients, and that's before the exam even begins.

MEDLINE indexes Pharmaceutical Nanotechnology
Pharmaceutical Nanotechnology, an important journal published by Benthm Science, is accepted to be included in MEDLINE.

Nanotechnology and nanopore sequencing
DNA is the hereditary material in our cells and contains the instructions for them to live, behave, grow, and develop.

Nanotechnology: Lighting up ultrathin films
Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet in Munich have developed a method for rapid and efficient characterization of these materials.

Read More: Nanotechnology News and Nanotechnology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to