Nav: Home

Key aspects of human cell aging reversed by new compounds

August 07, 2018

Key aspects of the ageing of human cells can be reversed by new compounds developed at the University of Exeter, research shows.

In a laboratory study of endothelial cells - which line the inside of blood vessels - researchers tested compounds designed to target mitochondria (the "power stations" of cells).

In the samples used in the study, the number of senescent cells (older cells that have deteriorated and stopped dividing) was reduced by up to 50%. The Exeter team also identified two splicing factors (a component of cells) that play a key role in when and how endothelial cells become senescent.

The findings raise the possibility of future treatments not only for blood vessels - which become stiffer as they age, raising the risk of problems including heart attacks and strokes - but also for other cells.

"As human bodies age, they accumulate old (senescent) cells that do not function as well as younger cells," said Professor Lorna Harries, of the University of Exeter Medical School.

"This is not just an effect of ageing - it's a reason why we age.

"The compounds developed at Exeter have the potential to tweak the mechanisms by which this ageing of cells happens.

"We used to think age-related diseases like cancer, dementia and diabetes each had a unique cause, but they actually track back to one or two common mechanisms.

"This research focuses on one of these mechanisms, and the findings with our compounds have potentially opened up the way for new therapeutic approaches in the future.

"This may well be the basis for a new generation of anti-degenerative drugs."

Professor Harries said the goal was to help people stay healthier for longer. She added: "This is about health span and quality of life, rather than merely extending lifespan."

In a paper published last year, the team demonstrated a new way to rejuvenate old cells in the laboratory.

However, the new research looked at precisely targeting and rejuvenating mitochondria in old cells.

Each one of our genes is capable of making more than one product, and splicing factors are the genes that make the decision about which of these products are made.

In this new work, using novel chemicals, the researchers were able to very specifically target two splicing factors (SRSF2 or HNRNPD) that play a key role in determining how and why our cells change with advancing age.

"Nearly half of the aged cells we tested showed signs of rejuvenating into young cell models," said Professor Harries.

The researchers tested three different compounds, all developed at the University of Exeter, and found each produced a 40-50% drop in the number of senescent blood vessel cells.

The compounds in question - AP39, AP123 and RT01 - have been designed by the Exeter team to selectively deliver minute quantities of the gas hydrogen sulfide to the mitochondria in cells and help the old or damaged cells to generate the 'energy' needed for survival and to reduce senescence.

"Our compounds provide mitochondria in cells with an alternative fuel to help them function properly," said Professor Matt Whiteman, also from the University of Exeter.

"Many disease states can essentially be viewed as accelerated ageing, and keeping mitochondria healthy helps either prevent or, in many cases using animal models, reverse this.

"Our current study shows that splicing factors play a key role in determining how our compounds work."

The research was funded by Dunhill Medical Trust and the Medical Research Council.

The paper, published in the journal Aging, is entitled: "Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2."
-end-


University of Exeter

Related Mitochondria Articles:

Mitochondria-targeted antioxidant SkQ1 helps to treat diabetic wounds
Members of the Faculty of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University, have tested on a mouse model a mitochondria-targeted antioxidant, helping to treat diabetic wounds.
Mitochondria targeting anti-tumor compound
Researchers from Kumamoto University in Japan have found that the compound folic acid-conjugated methyl-BETA-cyclodextrin (FA-M-BETA-CyD) has significant antitumor effects on folate receptor-ALPHA-expressing (FR-ALPHA (+)) cancer cells.
Closing the gate to mitochondria
A team of researchers develops a new method that enables the identification of proteins imported into mitochondria.
Elucidated connection between renal failure and 'bad' mitochondria described
Biologists from the A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University suggested the approach to prevent kidney injury after ischemia.
How exercise -- interval training in particular -- helps your mitochondria stave off old age
Researchers have long suspected that the benefits of exercise extend down to the cellular level, but know relatively little about which exercises help cells rebuild key organelles that deteriorate with aging.
Cell disposal faults could contribute to Parkinson's, study finds
A fault with the natural waste disposal system that helps to keep our brain cell 'batteries' healthy may contribute to neurodegenerative disease, a new study has found.
Sex cells evolved to pass on quality mitochondria
Mammals immortalize their genes through eggs and sperm to ensure future generations inherit good quality mitochondria to power the body's cells, according to new UCL research.
Newly identified pathway in mitochondria fuels tumor progression across cancer types
Scientists at The Wistar Institute have identified a novel protein pathway across several types of cancer that controls how tumor cells acquire the energy necessary for movement, invasion and metastasis.
Collapse of mitochondria-associated membrane in ALS
Mitochondria-associated membrane (MAM) is a contacting site of endoplasmic reticulum and mitochondria, and plays a key role in cellular homeostasis.
New research on the muscles of elite athletes: When quality is better than quantity
A Danish-Swedish research team working on a project led by University of Southern Denmark has discovered that muscle endurance is not only determined by the number of mitochondria, but also their structure.

Related Mitochondria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...