Nav: Home

Pacific Ocean's effect on Arctic warming

August 07, 2018

Palo Alto, CA-- New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than previously thought. The findings are published in the August 7, 2018, issue of Nature Communications.

The Arctic is experiencing larger and more rapid increases in temperature from global warming more than any other region, with sea-ice declining faster than predicted. This effect, known as Arctic amplification, is a well-established response that involves many positive feedback mechanisms in polar regions. Q7 What has not been well understood is how sea-surface temperature patterns and oceanic heat flow from Earth's different regions, including the temperate latitudes, affect these polar feedbacks. This new research suggests that the importance of changes occurring in the Pacific may have a stronger impact on Arctic climate than previously recognized.

Paleoclimate records show that climate change in the Arctic can be very large and happen very rapidly. During the last deglaciation, as the planet was starting to warm from rising greenhouse gases, there were two episodes of accelerated warming in the Arctic--with temperatures increasing by 15°C (27°F) in Greenland over the course of decades. Both events were accompanied by rapid warming in the mid-latitude North Pacific and North Atlantic oceans.

Using these past changes as motivation for the current study, the research team* modeled a series of ocean-to-atmosphere heat flow scenarios for the North Pacific and the North Atlantic. They used the National Center for Atmospheric Research's Community Earth System Model (CESM), to assess the impacts to the Arctic's surface temperature and climate feedbacks.

Praetorius, who was at Carnegie at the time of the research and is now with the USGS in Menlo Park, CA explained: "Since there appeared to be coupling between abrupt Arctic temperature changes and sea surface temperature changes in both the North Atlantic and North Pacific in the past, we thought it was important to untangle how each region may affect the Arctic differently in order to provide insight into recent and future Arctic changes."

The researchers found that both cooling and warming anomalies in the North Pacific resulted in greater global and Arctic surface air temperature anomalies than the same perturbations modeled for the North Atlantic. Until now, this sensitivity had been underappreciated.

The scientists looked at several mechanisms that could be causing the changes and found that the strong global and Arctic changes depended on the magnitude of water vapor transfer from the mid-latitude oceans to the Arctic. When warm moist air is carried poleward towards the Arctic, it can lead to more low-lying clouds that act like a blanket, trapping warmth near the surface. The poleward movement of heat and moisture drive the Arctic's sea-ice retreat and low-cloud formation, amplifying Arctic warming.

The so-called ice-albedo feedback causes retreating ice and snow to lead to ever greater warming through increasing absorption of solar energy on darker surfaces.

In very recent years, the Arctic has experienced an even greater acceleration in warming. The authors note that the unusually warm ocean temperatures in the Northeast Pacific paralleled the uptick in Arctic warming, possibly signaling a stronger link between these regions than generally recognized.

"While this is a highly idealized study, our results suggest that changes in the Pacific Ocean may have a larger influence on the climate system than generally recognized," remarked Carnegie coauthor Ken Caldeira.
-end-
* Co-authors are Summer Praetorius, USGS, Menlo Park, CA; Maria Rugenstein, Institute for Atmospheric and Climate Science, Zurich; and Geeta Persad and Ken Caldeira of Carnegie's Department of Global Ecology, Stanford, CA.

This work was supported by the Innovative Climate and Energy Research and the Carnegie Institution fir Science endowment.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.