Nav: Home

How a computer learns to dribble: Practice, practice, practice

August 07, 2018

Basketball players need lots of practice before they master the dribble, and it turns out that's true for computer-animated players as well. By using deep reinforcement learning, players in video basketball games can glean insights from motion capture data to sharpen their dribbling skills.

Researchers at Carnegie Mellon University and DeepMotion Inc., a California company that develops smart avatars, have for the first time developed a physics-based, real-time method for controlling animated characters that can learn dribbling skills from experience. In this case, the system learns from motion capture of the movements performed by people dribbling basketballs.

This trial-and-error learning process is time consuming, requiring millions of trials, but the results are arm movements that are closely coordinated with physically plausible ball movement. Players learn to dribble between their legs, dribble behind their backs and do crossover moves, as well as how to transition from one skill to another.

"Once the skills are learned, new motions can be simulated much faster than real-time," said Jessica Hodgins, Carnegie Mellon professor of computer science and robotics.

Hodgins and Libin Liu, chief scientist at DeepMotion, will present the method at SIGGRAPH 2018, the Conference on Computer Graphics and Interactive Techniques, Aug. 12-18, in Vancouver.

"This research opens the door to simulating sports with skilled virtual avatars," said Liu, the report's first author. "The technology can be applied beyond sport simulation to create more interactive characters for gaming, animation, motion analysis, and in the future, robotics."

Motion capture data already add realism to state-of-the-art video games. But these games also include disconcerting artifacts, Liu noted, such as balls that follow impossible trajectories or that seem to stick to a player's hand.

A physics-based method has the potential to create more realistic games, but getting the subtle details right is difficult. That's especially so for dribbling a basketball because player contact with the ball is brief and finger position is critical. Some details, such as the way a ball may continue spinning briefly when it makes light contact with the player's hands, are tough to reproduce. And once the ball is released, the player has to anticipate when and where the ball will return.

Liu and Hodgins opted to use deep reinforcement learning to enable the model to pick up these important details. Artificial intelligence programs have used this form of deep learning to figure out a variety of video games and the AlphaGo program famously employed it to master the board game Go.

The motion capture data used as input was of people doing things such as rotating the ball around the waist, dribbling while running and dribbling in place both with the right hand and while switching hands. This capture data did not include the ball movement, which Liu explained is difficult to record accurately. Instead, they used trajectory optimization to calculate the ball's most likely paths for a given hand motion.

The program learned the skills in two stages -- first it mastered locomotion and then learned how to control the arms and hands and, through them, the motion of the ball. This decoupled approach is sufficient for actions such as dribbling or perhaps juggling, where the interaction between the character and the object doesn't have an effect on the character's balance. Further work is required to address sports, such as soccer, where balance is tightly coupled with game maneuvers, Liu said.
-end-


Carnegie Mellon University

Related Video Games Articles:

Video games improve the visual attention of expert players
Long-term experiences of action real-time strategy games leads to improvements in temporal visual selective attention.
Study questions video games' effects on violent behavior
A new Contemporary Economic Policy study finds that there is not enough information to support the claim that violent video games lead to acts of violence.
Do video games drive obesity?
Are children, teenagers and adults who spend a lot of time playing video games really more obese?
DeepMind's new gamer AI goes 'for the win' in multiplayer first-person video games
DeepMind researchers have taught artificially intelligent gamers to play a popular 3D multiplayer first-person video game with human-like skills -- a previously insurmountable task.
How does dark play impact the effectiveness of serious video games?
A new study has shown that allowing ''dark play'' in a serious video game intended to practice skills transferable to a real-life setting does not impact the game's effectiveness.
Study: Collaborative video games could increase office productivity
Move over trust falls and ropes courses, turns out playing video games with coworkers is the real path to better performance at the office.
Pitt researcher uses video games to unlock new levels of A.I.
Dr. Jiang designs algorithms that learn decision strategies in complex and uncertain environments like video games.
For blind gamers, equal access to racing video games
Computer Scientist Brian A. Smith has developed the RAD -- a racing auditory display -- to enable visually impaired gamers play the same types of racing games that sighted players play with the same speed, control, and excitement as sighted players.
Video games to improve mobility after a stroke
A joint research by the Basque research center BCBL and the London Imperial College reveals that, after a cerebral infarction, injuries in areas that control attention also cause motility problems.
No evidence to support link between violent video games and behaviour
Researchers at the University of York have found no evidence to support the theory that video games make players more violent.
More Video Games News and Video Games Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.