Nav: Home

Corals are becoming more tolerant of rising ocean temperatures

August 07, 2018

The existence and causes of coral bleaching are recognized as an increasing world-wide environmental concern related to climate change. A number of experiments have been conducted since the early 1970s at the Hawai'i Institute of Marine Biology's (HIMB) Coral Reef Ecology Laboratory in Kāne'ohe Bay, Hawai'i and the Mid-Pacific Marine Laboratory (MPL) at Enewetak, Marshall Islands to determine the long-term temperature thresholds inducing coral bleaching. A new study published in PeerJ - the Journal of Life & Environmental Sciences replicates 1970s experiments and provides encouraging evidence to suggest corals today are adapting at an unexpectedly rapid rate. Still, these rates are being outpaced by rising ocean temperatures.

Coral bleaching is a process wherein corals lose their symbiotic algae, zooxanthellae, which provide a significant food source and color to their coral host. The white coral skeleton is then visible through the transparent tissues giving the characteristic "bleached" appearance. Mortality will occur if the coral and symbiont relationship is not reestablished shortly.

The 1970s experiments were the first to simulate elevated temperature stress in a flow-through seawater system, and the results duplicated the effects of high temperature events that have become increasingly wide-spread, frequent and severe in coral habitats worldwide in the last 35 years. Results determined temperature tolerances of corals were very low, only +1-2ºC above the normal maximum temperatures. Although temperatures varied geographically, most coral species began to bleach within this range.

The identical system, methodology, and location of the initial 1970s experiment was replicated in 2017 with one of the original researchers, Dr. Steve Coles. This provided an unique opportunity to evaluate whether coral bleaching thresholds have changed in nearly half a century. Corals were held at ambient and elevated temperatures comparable to the 1970 experiment for a one-month exposure, followed by a 28 days recovery period.

"To better understand coral acclimatization and adaptation, most studies compare corals from different reef locations, whereas this is the first study to compare the same coral species from the same location over time. Re-running a 48-year old experiment using the same coral species, same experimental setup, and same observer allows us to directly test changes in coral temperature tolerance over the last half century." Dr. Keisha Bahr

Differences between the two experiments were dramatic. Results show a substantial increase in temperature tolerance within the tested corals. In the three species of Hawaiian corals retested, bleaching occurred later, with higher survivorship and growth rates than corals in 1970. In 2017, survivorship was significantly higher (60-92%) as compared to 1970 (0-40%). Under elevated temperatures, calcification growth rates were reduced by an average of 26-63%, whereas in 1970, average calcification reductions ranged between 99-173%.

Such dramatic differences in coral bleaching temperature thresholds indicate a capacity for adjustment in temperature tolerance, either by changes in physiological process or shifts in symbiotic zooxanthellae types (acclimatization), or natural selection for the survival of more temperature tolerant corals (adaptation). Until now, it had not been determined how long these processes take or if this change can occur at a pace rapid enough to adjust to the frequency and severity of current elevated temperature events.

"Although these results are encouraging in their indication that acclimatization/adaptation of corals and their symbionts can occur at an unexpectedly rapid rate, increased bleaching tolerance may not be enough for widespread coral survival." Dr. Ku'ulei Rodgers.

"A possible influence on the results may be the substantially higher water quality in the Kāne?ohe Bay in 2017 as compared to 1970 due to nearby secondary treated sewage release at the time. Elevated levels of dissolved nitrogen have been implicated in stimulating coral bleaching. When verified, this will support the importance of reducing land-based source nutrients to assist management in limiting coral bleaching and mortality." Dr. Steve Coles

The slow growth and recruitment of many species of corals, combined with repetitive bleaching events of increasing severity and duration, may lead to catastrophic regional reductions in coral diversity and abundance. To prevent or even mitigate, this will require reduction in use of fossil fuels and lower emissions of CO2 and other greenhouse gases that are increasing air and seawater temperatures worldwide at an alarming rate.

Bleached coral colonies in the Kāne?ohe Bay, Hawaii. Photo credit: Dr. Keisha Bahr

Healthy and bleached brown rice coral (Montipora capitata). Photo credit: Dr. Keisha Bahr

Dr. Keisha Bahr surveying a large bleached coral colony. Photo credit: Ji Hoon Justin Han

Dr. Keisha Bahr surveying a healthy coral colony. Photo credit: Ji Hoon Justin Han

The Coral Reef Ecology Lab located at the Hawai?i Institute of Marine Biology in Kāne?ohe Bay, Hawaii. Photo credit: Claire Lager

Full Media Pack including image:

Link to the Published Version of the article (quote this link in your story - the link will ONLY work after the embargo lifts): your readers will be able to freely access this article at this URL.

Citation to the article: Coles et al. (2018), Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6:e5347; DOI 10.7717/peerj.5347


PeerJ is an Open Access publisher of two peer-reviewed journals and a preprint server. PeerJ's mission is to help the world efficiently publish its knowledge. All works published by PeerJ are Open Access and published using a Creative Commons license (CC-BY 4.0). PeerJ is based in San Diego, CA and the UK and can be accessed at

PeerJ is the peer-reviewed journal for Biology, Medicine and Environmental Sciences. PeerJ has recently added 15 areas in environmental science subject areas, including Natural Resource Management, Climate Change Biology, and Environmental Impacts.

PeerJ has an Editorial Board of over 1,900 respected academics, including 5 Nobel Laureates. PeerJ was the recipient of the 2013 ALPSP Award for Publishing Innovation. PeerJ Media Resources (including logos) can be found at:

Media Contacts

For the authors:

Keisha Bahr -

For PeerJ: email: ,

Note: If you would like to join the PeerJ Press Release list, please register at:


Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at