Nav: Home

Household phenomenon observed by Leonardo da Vinci finally explained by Cambridge research

August 07, 2018

An everyday occurrence spotted when we turn on the tap to brush our teeth has baffled engineers for centuries - why does the water splay when it hits the sink before it heads down the plughole?

Famous inventor and painter Leonardo da Vinci documented the phenomenon, now known as a hydraulic jump, back in the 1500s. Hydraulic jumps are harmless in our household sinks but they can cause violent waves, turbulence and whirlpools in deeper water.

Since the 1820s scientists have believed that hydraulic jumps occur partly as a result of the gravitational pull. But a paper published in the Journal of Fluid Mechanics has disproved this longstanding theory.

Rajesh Bhagat, a Chemical Engineering PhD student at St John's College, University of Cambridge, and first author of the paper, fired jets of water upwards and sideways onto flat surfaces, and witnessed exactly the same hydraulic jumps as those when the water flowed downwards.

But what was causing it? Bhagat suspected they could all affected by the same factors - surface tension and viscosity.

By altering these attributes of the water he was able to accurately predict the size of the hydraulic jumps, regardless of which direction the water was moving - debunking the 200-year-old gravitational theory as the cause of a kitchen sink type hydraulic jump. This kind of hydraulic jump is known as a circular hydraulic jump.

Professor Paul Linden, Director of Research at the Department of Applied Mathematics and Theoretical Physics at the University of Cambridge and an author of the paper, described Bhagat's findings as 'ground breaking'.

He explained: "His experiments and theory show that the surface tension of the liquid is the key to the process and has this has never before been recognised even though the problem was discussed by da Vinci and many others since. This work represents a remarkable achievement in our understanding of the dynamics of thin layers of fluid."

Bhagat predicts that his findings could have wide reaching consequences for industries that have high levels of water consumption.

He said: "Knowing how to manipulate the boundary of a hydraulic jump is very important and now with this theory we can easily extend or reduce the boundary.

"Understanding this process has big implications and could reduce industrial water use dramatically. The new theory is already being used in practical work in the Chemical Engineering department. People can use this theory to find new ways to clean everything from cars to factory equipment."

Bhagat hopes his research will also be used to find new ways to help us use less water in the average household.
-end-


St John's College, University of Cambridge

Related Surface Tension Articles:

Artificial cartilage under tension as strong as natural material
Biomedical engineers at the University of California, Davis, have created a lab-grown tissue similar to natural cartilage by giving it a bit of a stretch.
Cholesterol -- a key player at the lung surface
Cholesterol, a naturally occurring compound at the lung surface, has been shown to have a clear effect on the properties of this nanoscale film that covers the inside of our lungs.
Dramatic improvement in surface finishing of 3-D printing
Waseda University researchers have developed a process to dramatically improve the quality of 3-D printed resin products.
Ubiquitous but overlooked, fluid is a source of muscle tension
The cellular fluid in every muscle fiber appears to play a key but previously unacknowledged role in the mechanics of muscle stretch, according to a new study by Brown University biologists.
First detection of boron on the surface of Mars
Boron has been identified for the first time on the surface of Mars, indicating the potential for long-term habitable groundwater in the ancient past.
More Surface Tension News and Surface Tension Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...