Nav: Home

Forests crucial for limiting climate change to 1.5 degrees

August 07, 2018

Trying to tackle climate change by replacing forests with crops for bioenergy power stations that capture carbon dioxide (CO2) could instead increase the amount of CO2 in the atmosphere, scientists say.

Biomass Energy with Carbon Capture and Storage (BECCS) power stations are designed to produce energy and store the resulting carbon dioxide (CO2) in bedrock deep underground.

But a study led by the University of Exeter suggests that converting large land areas to growing crops as biomass for BECCS would release so much CO2 that protecting and regenerating forests is a better option in many places.

"The vast majority of current IPCC scenarios for how we can limit global warming to less than 2°C include BECCS," said lead author Dr Anna Harper, from the University of Exeter.

"But the land required to grow biomass in these scenarios would be twice the size of India".

This motivated the research team to look at the wider consequences of such a radical change in global land use.

The researchers used a cutting-edge computer model of global vegetation and soil and presented it with scenarios of land-use change consistent with stabilising the climate at less than 1.5oC and 2oC of global warming.

The results warn that using BECCS on such a large scale could lead to a net increase of carbon in the atmosphere, especially where the crops are assumed to replace existing forests.

Co-author Dr Tom Powell, from the University of Exeter, explained: "In some places BECCS will be effective, but we've found that in many places protecting or regenerating forests is much more sensible."

How well BECCS works depends on factors such as the choice of biomass, the fate of initial above-ground biomass and the fossil-fuel emissions offset in the energy system - so future improvements could make it a better option.

Professor Chris Huntingford, of the UK Centre for Ecology and Hydrology, said: "Our paper illustrates that the manipulation of land can help offset carbon dioxide emissions, but only if applied for certain quite specific locations."

Dr Harper concluded: "To meet the climate change targets from the Paris agreement, we need to both drastically reduce emissions and employ a mix of technologies to remove carbon dioxide from the atmosphere. There is no single get-out-of-jail-free card."

The team involved in the new study included researchers from the Centre for Ecology and Hydrology and the Met Office.

Drawing together expertise to create solutions to the global changes that humans are now causing is a key focus of the University of Exeter's new Global Systems Institute.
-end-
The paper, published in the journal Nature Communications, is entitled: "Land-use emissions play a critical role in land-based mitigation for Paris climate targets."

University of Exeter

Related Biomass Articles:

Inducing plasma in biomass could make biogas easier to produce
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges.
Microbes working together multiply biomass conversion possibilities
Non-edible plants are a promising alternative to crude oil, but their heterogenous composition can be a challenge to producing high yields of useful products.
Evergreen idea turns biomass DNA into degradable materials
A Cornell-led collaboration is turning DNA from organic matter -- such as onions, fish and algae -- into biodegradable gels and plastics.
Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.
A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.
Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.
Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.
Biotech breakthrough turns waste biomass into high value chemicals
A move towards a more sustainable bio-based economy has been given a new boost by researchers who have been able to simplify a process to transform waste materials into high value chemicals.
How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
More Biomass News and Biomass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.