Nav: Home

Potential indicator for the early detection of dementias

August 07, 2018

Researchers at the University of Basel have discovered a factor that could support the early detection of neurodegenerative diseases such as Alzheimer's or Parkinson's. This cytokine is induced by cellular stress reactions after disturbances of the mitochondria, the "cell's power plants," as neuropathologists write in the journal Cell Reports.

The normal functioning of human cells is based on the coordinated interaction of different cellular organelles. In many cases, an impaired communication between these organelles will lead to the activation of a stress response to ensure the survival of affected cells. A research group was able to demonstrate this in detail for brain neurons. The group is headed by Prof. Dr. Stephan Frank from the Institute of Medical Genetics and Pathology at the University of Basel and University Hospital of Basel; the universities of Cambridge (UK) and Padua (Italy) were also involved.

The neuropathologists were able to show that impairments on the level of mitochondria, commonly known as the "cell's powerhouses," also affect neighboring organelles, such as the so-called endoplasmic reticulum. A consecutively activated stress reaction leads to the release of fibroblast growth factor-21 (FGF21) by nerve cells with disturbed mitochondria. The Basel researchers further observed that the same substance is also induced in various models of neurodegenerative disorders, where it can be detected prior to neuronal cell death.

Therapies against chronic cell stress?

As chronic cell stress is an important factor in the development of neurodegenerative diseases, FGF21 could potentially be suitable as a biomarker for the pre-symptomatic detection of diseases such as Alzheimer's or Parkinson's. However, as FGF21 can also be produced by other tissues and organs, such as adipose tissue and liver, further rigorous testing will be required in this regard. The availability of a robust biomarker would represent an important advance in the development of novel approaches targeting chronic cell stress to provide neuroprotection.

Annual health care expenses for dementia-related neurodegenerative disorders amount to approx. CHF 7 billion in Switzerland, with demographic estimates projecting a 1.7 increase in the prevalence of these disorders over the next ten years due to increasing life expectancy.
-end-


University of Basel

Related Mitochondria Articles:

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.
'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.
A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.
Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.
First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.
Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.
Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.
Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.
Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.
Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.
More Mitochondria News and Mitochondria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.