Nav: Home

Aboard the ISS, researchers investigate complex dust behavior in plasmas

August 07, 2018

WASHINGTON, D.C., August 7, 2018 -- 400 kilometers above Earth, researchers examined waves in complex plasma under microgravity conditions and found that the microparticles behaved in nonuniform ways in the presence of varying electrical fields. They report some of the first findings from the Plasma-Kristall 4 (PK-4) experiment in Physics of Plasmas, from AIP Publishing.

PK-4 is a collaboration between the European Space Agency and the Russian State Space Corporation "Roscosmos" to investigate complex plasmas. Complex or dusty plasmas contain electrons, ions and neutral gas, as well as microparticles such as dust grains. The microparticles become highly charged in the plasma and interact strongly with each other, which can lead to liquid or even crystalline behavior within the complex plasma. The most important property of such a system is that investigations of physical phenomena can be performed on the individual (micro-) particle level allowing new insights into fluid and solid-state physics.

Gravity distorts most complex plasmas experiments on Earth, so the microgravity environment on the International Space Station enables otherwise impossible research. In February 2017, researchers from the DLR-Institute of Materials Physics in Space at the German Aerospace Center (DLR) and Joint Institute for High Temperatures of the Russian Academy of Sciences observed dust density waves or visible sound waves as they moved through the complex plasma.

In the experiment, a microparticle cloud drifted in a plasma with a constant direct current and formed self-excited wave patterns. After that, the discharge polarity was reversed. Although the field strength was nearly identical for both discharge polarities, the wave patterns exhibited bifurcations: A new wave crest formed between the two old crests in the head of the microparticle cloud.

"The most interesting finding was the velocity of these waves strongly depends on the electric field, which is exciting the waves," said Mikhail Pustylnik, an author on the paper. "We expect to encounter these types of waves in astrophysical situations where you might have dust -- in a cometary tail, for example."

"Many plasma processes are also used in the semiconductor industry," Pustylnik said. Dust poses big challenges for the semiconductor industry because particles may damage a silicon wafer during manufacturing. Starting this fall, the researchers are planning additional experiments that will vary the range of electric fields by switching the polarity of the discharge.
-end-
The article, "Dust density waves in a dc flowing complex plasma with discharge polarity reversal," is authored by Surabhi Jaiswal, Mikhail Pustylnik, Sergey Zhdanov, Hubertus Thomas, Andrey Lipaev, Alexandr Usachev, Vladimir Molotkov, Vladimir Fortov, Markus Thoma and Oleg Novitskii. The article will appear in Physics of Plasmas on August 7, 2018. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5040417.

ABOUT THE JOURNAL

Physics of Plasmas is devoted to the publication of original experimental and theoretical work in plasma physics, from basic plasma phenomena to astrophysical and dusty plasmas. See http://pop.aip.org.

American Institute of Physics

Related Plasma Articles:

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.
Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.
How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.
A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.
Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.
Chemotherapeutic drugs and plasma proteins: Exploring new dimensions
This review provides a bird's eye view of interaction of a number of clinically important drugs currently in use that show covalent or non-covalent interaction with serum proteins.
More Plasma News and Plasma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.