Nav: Home

Observing the mechanism of metastasis for the first time

August 07, 2018

WASHINGTON, D.C., August 7, 2018 -- Metastasis, or the formation of secondary tumors, is a leading contributor to the vast majority of deaths related to cancer. The exact mechanisms for how broken cellular function appears in cells far removed from a cancer's primary tumor remain an area of ongoing research. New work looks to explain a century-old hypothesis for how cancer forms hybrids within the body, leading to metastasis.

Researchers from the University of Minnesota Twin Cities confirmed a link between healthy-tumor hybrid cells and metastatic tumors for the first time in live animals. In APL Bioengineering, from AIP Publishing, the team discusses how they studied the distinct, heterogenous gene expression profiles found in human hybrid cells and how hybrid cells spontaneously occur in mouse models.

"The research community is recognizing that heterogeneity can make tumors very hard to treat," said Brenda Ogle, one of the authors on the paper. "Instead of creating many different therapies to target different tumor cell types, it might be possible to quell heterogeneity at the source by limiting hybrid formation in the tumor."

Nearly 100 years ago, one theory suggested that some metastatic cells spontaneously caused secondary tumors by fusing their cellular material with regular cells and re-establishing their errant gene expression. It was only in recent years that sequencing technology and reporter molecules were advanced enough to tackle the topic.

To address these questions, Ogle and her colleagues first cultured healthy cells and tumor cells that spontaneously fused to form hybrids. Using a technique called RNA-seq, the group took a molecular snapshot of the gene expression of each fused hybrid cell.

The resulting hybrids were found to express the genes of both the healthy cell and the tumor cell. This factor aids metastatic cells in surviving the primary tumor and potentially helping lay the groundwork for other tumor cells.

The group then engineered mice that produced an inducible reporter enzyme called luciferase when hybrids were present. This allowed the team to track hybrid formation in living animals for the first time. Rather than using bioluminescent macroscopic imaging, which lacks the sensitivity to detect cells scattered across a specimen, they developed a technique that stitched together hundreds of microscopic images to detect luciferase.

Sites where the mice expressed luciferase lit up, indicating that hybrid cells were forming spontaneously in vivo. The metastases showed a significantly higher proportion of hybrid cells than the primary tumor.

"When hybrids form, cytoplasmic and nuclear material of two cells are forced to reorganize into one cell," Ogle said. "Some of those cells can suddenly go gangbusters and start proliferating and moving more actively than their parent cells."

Ogle said the group hopes their findings will lead to further research on how hybrids form, since the development of drugs to inhibit hybrid formation might prevent metastatic spread.
-end-
The article, "Breast tumor cell hybrids form spontaneously in vivo and contribute to breast tumor metastases," is authored by Casey Chitwood, Claire Dietzsch, Gabriel Jacobs, Tanner McArdle, Brian T. Freeman, Annanya Banga, Felicite Noubissi-Kamdem and Brenda M. Ogle. The article will appear in APL Bioengineering on August 7, 2018 (DOI: 10.1063/1.5024744). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5024744.

ABOUT THE JOURNAL

APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. See https://aip.scitation.org/journal/apb.

American Institute of Physics

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.